• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como resolver a equação linear?

Como resolver a equação linear?

Mensagempor btag » Qui Mai 05, 2011 14:33

x+3y-2z=5
3x+5y+6z=7
2x+4y+3z=8
btag
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Mai 05, 2011 14:28
Formação Escolar: GRADUAÇÃO
Área/Curso: FISIOTERAPIA
Andamento: formado

Re: Como resolver a equação linear?

Mensagempor carlosalesouza » Qui Mai 05, 2011 15:39

Existem diversas formas. Pode ser feito por matriz, por substituição, enfim...

Por matriz é mais fácil... por substituição é melhor de entender (a meu ver)

Considerando que x, y e z mantém o mesmo valor nas três equações, o que é necessário para caracterizar o sistema de equações, pegue uma equação, encontre a relação entre uma das variáveis e as demais...

Depois, pegue outra sentença e substitua a variável que voce encontrou... assim, restarão duas variáveis... isole uma delas e siga substituindo... rs em breve voce terá o valor de uma delas e poderá, sempre substituindo, encontrar o valor das três...

Como disse, este não é o caminho mais fácil, mas permite que voce visualize bem a relação entre as variáveis...

Outro método é o da soma... da mesma forma que num sistema com duas variáveis...

Voce separa duas equações e multiplica os dois lados da igualdade de uma delas por um valor que faça com que uma das variáveis da primeira sentença se torne simétrica à da segunda equação.... então você soma os termos restantes do produto e no final te sobrarão duas variáveis numa nova equação. Voce isola uma delas e segue substituindo... rs

Pra ficar mais fácil de entender, vamos usar um outros sistema similar:

\\
\left \{ \begin{matrix} 
x - 3y + 5z = 1\\
x + 2y + z = 12\\
2x - y + 3z = 10
 \end{matrix}\right

Pela soma, separamos as duas primeiras e multiplicando a primeira por -1
x - 3y + 5z = 1 (-1)\\
x + 2y + z = 12

Somando as duas equações:
\\
x - x + 2y + 3y + z - 5z = 12 - 1\\
5y - 4z = 11\\
5y = 11 + 4z \\
y = \frac{11 + 4z}{5}

Podemos, então, subsitituir o y por \frac{11 + 4z}{5} em qualquer das equações iniciais
\\
2x - y + 3z = 10\\
2x - \frac{11 + 4z}{5} + 3z = 10\\
2x +\frac{15z -(11 + 4z)}{5} = 10 \\
2x + \frac{15z - 4z - 11}{5} = 10\\
2x + \frac{11z-11}{5}=10\\
2x = 10 - \frac{11}{5}(z-1) \\
x = 5 - \frac{11}{10}(z-1)

Temos agora duas variáveis que podem ser substituídas por z...

\\
x - 3y +5z = 1\\
5 - \frac{11}{10}(z-1) - 3(\frac{11+4z}{5}) + 5z = 1\\
\frac{50- (11z - 11) - 6(11+4z)+50z-10}{10}=0\\
\frac{50 + 11 - 66 - 10 - 11z - 24z + 50z}{10}=0\\
\frac{61-76}{10}+\frac{50z - 35z}{10}=0\\
-\frac{15}{10}+\frac{15z}{10}=0\\
\frac{3}{2}z=\frac{3}{2}\\
z = 1

Assim:
\\
y = \frac{11+4z}{5}\\
y = \frac{11+4(1)}{5}\\
y = \frac{15}{5}\\
y = 3

e

\\
x = 5 - \frac{11}{10}(z-1)\\
x = 5 - \frac{11}{10}(0)\\
x = 5

Certo? Existem diversos caminhos, mas idéia é sempre levar em consideração as propriedades da igualdade.

O caminho da matriz é com certeza o mais rápido, pois a matriz é um algoritmo válido para realizar esse tipo de procedimento... infelizmente, a menos que voce entenda a natureza da matriz, a solução pode parecer ter vindo por mágica, e voce acaba não entendendo o funcionamento da resolução... pela soma e pela substituição, voce visualiza o desenrolar da resolução de forma mais descritiva, ficando mais fácil aprender e não esquecer mais...

Espero ter ajudado, qualquer dúvida, é só falar....
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59