por igorcalfe » Sex Mar 11, 2011 18:14
Como achar o zero da função por meio de Bháskara dessa questão?
![x{}^{2}+(1-\sqrt[]{3})x-\sqrt[]{3} x{}^{2}+(1-\sqrt[]{3})x-\sqrt[]{3}](/latexrender/pictures/713e7130d87c32a015f72aef9e5df3a0.png)
Obs: consegui usando soma e produto
-
igorcalfe
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Dom Out 17, 2010 10:39
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Elcioschin » Sex Mar 11, 2011 19:19
x² + (1 - \/3)x - \/3 = 0
Discriminante ----> D = b² - 4ac ----> D = (1 - \/3)² - 4*1*(-\/3) ----> D = 1 - 2*\/3 + 3 + 4*\/3 ----> D = 4 + 2*\/3
\/(D) = \/(4 + \/12) ----> \/(D) = \/3 + 1
Raízes:
x' = [ - (1 - \/3) + (\/3 + 1)]/2 ----> x' = \/3
x" = [ - (1 - \/3) - (\/3 + 1)]/2 ----> x' = - 1
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por igorcalfe » Ter Mar 15, 2011 23:35
Valeu mesmo
-
igorcalfe
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Dom Out 17, 2010 10:39
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida Função
por RJ1572 » Qui Abr 08, 2010 23:22
- 3 Respostas
- 2054 Exibições
- Última mensagem por Elcioschin

Sex Abr 09, 2010 13:22
Funções
-
- Dúvida Função
por vb_evan » Sáb Jul 03, 2010 09:18
- 4 Respostas
- 2553 Exibições
- Última mensagem por vb_evan

Qua Jul 07, 2010 09:35
Funções
-
- Função - puc-mg dúvida
por gustavoluiss » Sáb Jan 08, 2011 17:07
- 10 Respostas
- 5066 Exibições
- Última mensagem por Renato_RJ

Sáb Jan 08, 2011 22:49
Funções
-
- Função - Exp e Log - Dúvida!
por jamiel » Seg Jun 27, 2011 23:55
- 0 Respostas
- 5656 Exibições
- Última mensagem por jamiel

Seg Jun 27, 2011 23:55
Funções
-
- Função - Exp e Log - Dúvida 2 !
por jamiel » Ter Jun 28, 2011 01:25
- 0 Respostas
- 1204 Exibições
- Última mensagem por jamiel

Ter Jun 28, 2011 01:25
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.