por allendy » Qua Set 08, 2010 20:28
Boa noite a todos! Estou com uma dúvida enorme sobre como resolver sistemas lineares em que os enunciados das questões dizem que algumas incógnitas (a, b, c - por exemplo) fazem parte da solução, e pedem para que elas sejam descobertas. Um problema que "ilustra" a minha dúvida é o seguinte:
Se (a, b, c) é a solução do sistema
x + 2y + z = 1
3x + y - 11z = -2
2x + 3y - z = 1
então a + b + c é...?
Não sei se devo utilizar a Regra de Cramer, se as incógnitas que aparecem no enunciado equivalem ao "x, y e z"... Já tentei resolver problemas assim várias vezes, mas não consegui.
Obrigada desde já!

-
allendy
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Set 08, 2010 20:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Douglasm » Qua Set 08, 2010 20:32
Resolva o sistema normalmente. Ele diz que a, b e c são as SOLUÇÕES, ou seja, são os valores de x, y e z para os quais todas as equações são satisfeitas simultaneamente.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por allendy » Qua Set 08, 2010 20:37
Douglasm
Ah, ok... Obrigada mesmo! Continuarei tentando =)
-
allendy
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Set 08, 2010 20:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [LIMITES] Limite de Raiz "m" de "infinito"
por antonelli2006 » Sáb Set 17, 2011 05:56
- 5 Respostas
- 8794 Exibições
- Última mensagem por LuizAquino

Dom Set 18, 2011 10:08
Cálculo: Limites, Derivadas e Integrais
-
- Como calcular derivadas com a constante "e"
por fer_carnie » Seg Jun 20, 2011 20:40
- 1 Respostas
- 1935 Exibições
- Última mensagem por Fabio Cabral

Seg Jun 20, 2011 22:22
Cálculo: Limites, Derivadas e Integrais
-
- Como isolar a "P" na formula abaixo? 1
por Ewerton Alves » Seg Nov 01, 2021 09:37
- 1 Respostas
- 9012 Exibições
- Última mensagem por Cleyson007

Sex Nov 26, 2021 09:10
Teoria dos Números
-
- Matriz constituida de "uns" e "zeros"
por Carolziiinhaaah » Qui Jun 24, 2010 12:08
- 2 Respostas
- 5538 Exibições
- Última mensagem por Carolziiinhaaah

Qui Jun 24, 2010 12:50
Matrizes e Determinantes
-
- Como eu simplifico "issoS"?
por nathyn » Sex Fev 10, 2012 15:53
- 7 Respostas
- 4357 Exibições
- Última mensagem por nathyn

Ter Fev 14, 2012 18:11
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.