• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Aritmética modular

Aritmética modular

Mensagempor Lorenzo » Qui Jun 17, 2010 22:41

Estou com problemas em aritmética modular, por isso estou enviando esta pergunta:

(OBM) Encontre todos os inteiros a > 0 e b > 0 tais que:
4 . 3^a = 11+ 5^b

Na resolução percebi que é analisada a equação módulo 5. Assim:

4 . 3^a = 1 (mod 5) O problema é agora, daí conclui-se que "a" é par, e depois(em outra análise) que "b" também é par, só que eu não entendo como se da essa conclusão. Talvez haja alguma propriedade que não conheço. Por favor explique com detalhes.
Lorenzo
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Jun 13, 2010 21:12
Formação Escolar: ENSINO MÉDIO
Área/Curso: pretendo engenharia civil
Andamento: cursando

Re: Aritmética modular

Mensagempor Tom » Sex Jul 02, 2010 23:28

Desejamos encontrar as soluções naturais (a,b) para a equação 4.3^a=11+5^b

Ora, 11+5^b\equiv1\pmod{5}, para todo b. Logo 4.3^a\equiv1\pmod{5} e como 4 é inversível a 4 módulo cinco, então devemos ter 3^a\equiv4\pmod{5}

Analisando a congruência módulo cinco para as potências de três, temos:

3^1\equiv3\pmod{5}
3^2\equiv4\pmod{5}
3^3\equiv2\pmod{5}
3^4\equiv1\pmod{5}

A partir daí as potências vão deixando os mesmos resíduos de modo a concluirmos que:


3^{4t+1}\equiv3\pmod{5}
3^{4t+2}\equiv4\pmod{5}
3^{4t+3}\equiv2\pmod{5}
3^{4t}\equiv1\pmod{5}

Assim, como 3^a\equiv4\pmod{5}, então : a=4t+2, com t\in \mathbb{N}; que equivale a a\equiv2\pmod{4}, isto é, a é par!


Analisemos a equação à luz da congruência em módulo três: Para satisfazer a igualdade devemos ter 11+5^b\equiv0\pmod{3}, isto é, 5^b\equiv1\pmod{3}

Analisando a congruência módulo três para as potências de cinco, temos:

5^1\equiv2\pmod{3}
5^2\equiv1\pmod{3}
5^3\equiv2\pmod{3}
5^4\equiv1\pmod{3}

Analogamente, podemos concluir que : 5^{2k+1}\equiv2\pmod{3} e 5^{2k}\equiv1\pmod{3} . Assim, como 5^b\equiv1\pmod{3}, então b=2k, com k\in \mathbb_{N}, isto é, b é par!


Como a,b são ambos pares; sem perda de generalidade diremos que : a=2x e b=2k, com x,k, \in \mathbb_{N}; então:

4.3^{2x}=11+5^{2k}\rightarrow 2^2.3^{2x}-5^{2k}=11\rightarrow (2.3^x)^2-(5^k)^2=11, isto é, (2.3^x-5^k)(2.3^x+5^k)=11 e como 11 é primo, devemos ter:

(2.3^x-5^k)=1 (i)
(2.3^x+5^k)=11 (ii)

já que o primeiro fator é sempre menor que o segundo fator e ambos são naturais devido as condições de contorno do problema.


Somando (i) e (ii) : 4.3^x=12\rightarrow x=1
Subtraindo (i) de (ii): 2.5^k=10\rightarrow k=1

Assim só existe um único valor para a e um único valor para b que satisfazem, simultaneamente, a equação. Concluímos, portanto, que (a,b)=(2,2) é a única solução da equação.





Ps. Dava pra encurtar a resolução, mas como o Lorenzo pediu detalhes, achei melhor pormenorizar para ficar mais claro.
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}