• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Qual a soma dos algarismos?

Qual a soma dos algarismos?

Mensagempor Moreno1986 » Qua Mai 05, 2010 20:20

Um número natural de 6 algarismos começa com o algarismo 2, ordenado da esquerda para direita. Se esse algarismo for transferido para a última posição, conservando-se os demais na mesma ordem, obtém-se um número que é triplo do inicial. A soma dos seis algarismo é:

a) 21
b) 24
c) 27
d) 30
e) 32
Moreno1986
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Ter Abr 13, 2010 01:20
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: técnico em mecânica
Andamento: formado

Re: Qual a soma dos algarismos?

Mensagempor Molina » Qui Mai 06, 2010 00:39

Moreno1986 escreveu:Um número natural de 6 algarismos começa com o algarismo 2, ordenado da esquerda para direita. Se esse algarismo for transferido para a última posição, conservando-se os demais na mesma ordem, obtém-se um número que é triplo do inicial. A soma dos seis algarismo é:

a) 21
b) 24
c) 27
d) 30
e) 32

Boa noite.

Seja o número inicial da forma 2abcde (onde as letras são algarismos). Pelo enunciado, (2abcde)*3=abcde2

Escrevendo da outra forma:

2abcde
____x3
abcde2

Agora vem o grande truque:

Tenho que achar o número e, tal que multiplicado por 3 termina com o algarismo 2. O único que se encaixa é e=4 (4*3=12). Então e é 4:

2abc14
____x3
abc142

Agora tenho que achar o número d, tal que multiplicado por 3 termina com o algarismo (4-1)=3. O fato de ter que ser 3 deve-se ao número 1 que está em cima do d, já que 3*4 passou de 10, compreendido? O único que se encaixa é d=1 (1*3=3). Então d é 1:

Faça o mesmo com os próximos números. c multiplicado por 3 tem que ter final 1. Assim sucessivamente...

Qualquer dúvida, informe.

Bom estudo :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1546
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Qual a soma dos algarismos?

Mensagempor Moreno1986 » Qui Mai 06, 2010 14:38

Desculpa a ignorância, não entendi bem, mas como acho C agora?
Moreno1986
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Ter Abr 13, 2010 01:20
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: técnico em mecânica
Andamento: formado

Re: Qual a soma dos algarismos?

Mensagempor Molina » Qui Mai 06, 2010 14:45

Continuando...

2abc14
____x3
abc142

c multiplicado por 3 tem que ter final 1 (pois abc142). A única opção é 3*7=21. Logo c=7:

2ab714
____x3
ab7142

b multiplicado por 3 tem que ter final 5 (pois tem o 2 somando lá em cima). A única opção é 3*5=15 (e 15+2=17). Logo b=5:

2a5714
____x3
a57142

a multiplicado por 3 tem que ter final 4 (pois tem o 1 somando lá em cima). A única opção é 3*8=24 (e 24+1=25). Logo a=8:

285714
____x3
857142

Basta somar esses algarismos agora.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1546
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?