• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Parametrizar a seuinte curva

Parametrizar a seuinte curva

Mensagempor T0LKIEN » Ter Mar 29, 2016 11:20

2x^2 + 2y^2 - 6x - 2y + 4 = 0
T0LKIEN
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Mar 29, 2016 11:11
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando

Re: Parametrizar a seuinte curva

Mensagempor nakagumahissao » Sáb Mai 07, 2016 23:18

Primeiramente precisamos completar os quadrados para obtermos uma equação mais "simplificada", que neste caso é a de um círcunferência:

{2x}^{2} + {2y}^{2} - 6x - 2y + 4 = 0

Dividindo-se os dois lados desta equação por 2 teremos:

{x}^{2} + {y}^{2} - 3x - y + 2 = 0

Reordenando...

{x}^{2} - 3x + {y}^{2}  - y + 2 = 0

Completando-se os quadrados:

{x}^{2} - 3x + \square + {y}^{2}  - y + \square + 2 = 0

{\left(x - \frac{3}{2} \right)}^{2} + {\left(y - \frac{1}{2} \right)}^{2} + 2 - \frac{9}{4} - \frac{1}{4} = 0

Logo,

{\left(x - \frac{3}{2} \right)}^{2} + {\left(y - \frac{1}{2} \right)}^{2} - \frac{1}{2} = 0

{\left(x - \frac{3}{2} \right)}^{2} + {\left(y - \frac{1}{2} \right)}^{2} = \frac{1}{2} \;\;\;\;\;\;[1]

que se trata de uma circunferência com centro em (3/2, 1/2) e raio

r = \frac{\sqrt{2}}{2}

Se queremos parametrizar esta curva, podemos fazer, utilizando o centro (3/2, 1/2):

x = \frac{3}{2} +  \frac{\sqrt{2}}{2}\cos \theta \;\; e \;\; y = \frac{1}{2} +  \frac{\sqrt{2}}{2}\sin \theta

Que é a parametrização procurada.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 385
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}