• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema

Problema

Mensagempor Florisbela » Dom Mai 23, 2010 19:28

Boa noite. Como faço para resolver esse problema?

Seja "a" uma raiz da equação {x}^{2}+2x+{c}^{2}=0, em que C é um número real positivo. Se o discriminante dessa equação é menor que zero, então encontre |a|.
Florisbela
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Mai 23, 2010 19:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão Ambiental
Andamento: cursando

Re: Problema

Mensagempor DanielFerreira » Qua Jun 09, 2010 19:44

delta = 4 - 4c²
delta < 0

4 - 4c² < 0
- 4c² < - 4
c² > 1
c > 1

x^2 + 2x + 2^2 = 0
x^2 + 2x + 4 = 0
delta = 4 - 16
delta = - 12

a' = \frac{- 2 + 2\sqrt{3}}{2}
a' = - 1 + 1\sqrt{3}
a' = \sqrt{3} - 1

ou

a'' = \frac{- 2 - 2\sqrt{3}}{2}
a'' = - 1 - 1\sqrt{3}
a'' = - \sqrt{3} - 1

(...)
|a| = \sqrt{3} - 1
ou
|a| = \sqrt{3} + 1

acho que é isso...
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Problema

Mensagempor MarceloFantini » Qua Jun 09, 2010 20:35

Esta equação está muito estranha. Se ela tem discriminante é menor que zero, ela NÃO TEM raízes reais. Danjr, também não se esqueça que se o discriminante é menor que zero, suas respostas teria uma unidade imaginária ali, o que não acontece (porque não podemos afirmar que estamos trabalhando com os complexos).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Problema

Mensagempor DanielFerreira » Seg Jun 14, 2010 22:07

Tens razão.
não sei como transformei - 12 em + 12.
:-D
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}