Vejam o seguinte problema:
Seja n um número natural. Se
, então quanto vale n?Use

Fiz uma mudança de base e achei a relação:

Dividi toda a desigualdade por {2}^{100}. Substituí com a relação que achei acima, mas cheguei apenas a uma relação lógica de que n < n + 1 ou - 63,1 < - 62,1.
Como chegar em n?




![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)