primeiramente peço minhas desculpas aos colegas,leitores e estudantes desse site,pois editei erroneamente a primeira equaçao do sistema...vamos ao sistema correto e sua soluçao:

quando resolvemos um sistema de equaçao,procuramos os pontos em comuns das equaçoes,que podem ser pontos,retas,planos,superficies,hiperplanos etc...
o nosso sistema é de equaçoes lineares de primeiro grau,ou seja,todas as incognitas(x,y,z)tem potencia igual a 1.
nosso sistema é de 3 equaçoes,3 incognitas...vamos usar a "regra de cramer",pois o sistema é de poucas incognitas.
como tambem existe o "rouche-capelli",que é mais eficiente quando se trata de "discutir o sistema"."discutir o sistema" é saber as condiçoes de solubilidade,ou nao...e em caso de soluvel,achar os valores dessas incognitas...
tomamos o determinante da matriz incompleta



para se ter soluçao...
e

para se ter ou nao soluçao...m=-1,nao tera pois,o sistema

subst. (3) em (2)
z=-2...subst. z,x,y na (1)
