• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistemas de equações

Sistemas de equações

Mensagempor Danilo Dias Vilela » Qua Set 09, 2009 21:19

Se alguém puder me ajudar a resolver a seguinte questão:

Sabendo que: x+y+z=-1, calcule x+y+z+t
y+z+t=7
x+t= 4

Eu substituo as equações e consigo achar os valores de t=6 e x=-2, mas o y e o z eu não consigo. Chego ao final nas seguintes equações x+y+z=-1.
y+z=1. Molina concordo contigo e chego ao resultado y+z=1 e y+z=1. Só que por substituição eu anulo o z ou seja fico com 1=1. Eu não to conseguindo chegar no resultado final. Obrigado
Danilo Dias Vilela
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qua Set 09, 2009 01:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Sistemas de equações

Mensagempor Elcioschin » Qua Set 09, 2009 22:27

Danilo

Você calculou certo até aquí ----> t = 6

O problema NÃO pede para calcular x, y ou z ----> Ele pede para calcular x + y + z + t

Lembre-se que x + y + z = - 1

x + y + z + t = (x + y + z) + t = - 1 + 6 = 5
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.