• Anúncio Global
    Respostas
    Exibições
    Última mensagem

não sei como chegar na resposta

não sei como chegar na resposta

Mensagempor Dankaerte » Seg Ago 31, 2009 17:05

o exercício é o seguinte:

as equações (x+1)²+(y-4)²=64 e (x-4)²+(y+8)²=25 representam duas circunferências cuja posição relativa no plano permite afirmar que são:
a)interiores (sem ponto de intersecção)
b)tangentes exteriores
c)tangentes interiores
c)exteriores (sem ponto de intersecção)
d)secantes

tentei resolver:

(x+1)²+(y-4)²=64 (x-4)²+(y+8)²=25
x²+2x+1+y²-12y+16=64 x²-12x+16+y²+16y+64=25
x²+y²+2x-12y+17=64 x²+y²-12x+16y+80=25
x²+y²+2x-12y=47 x²+y²-12x+16y=-55


agora depois daqui não sei mais como prosseguir, alguém poderia me ajudar?
Dankaerte
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Ago 26, 2009 16:37
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: não sei como chegar na resposta

Mensagempor Elcioschin » Seg Ago 31, 2009 20:29

Você complicou:

(x + 1)² + (y - 4)² = 8² ----> Circunferência com centro A(-1, 4) e raio R = 8

(x - 4)² + (y + 8)² = 5² ----> Circunferência com centro B(4, -8) e raio R' = 5

Distância entre os centros A e B ----> d² = (xA - xB)² + (yA - yB)² ---->

d² = (-1 - 4)² + [4 - (-8)]² ----> d² = 25 + 144 ----> d² = 169 -----> d = 13

R + R' = 8 + 5 ----> R + R' = 13

Como R + R' = d as duas circunferências são tangentes entre sí exteriormente ----> Alternativa B.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: não sei como chegar na resposta

Mensagempor Dankaerte » Seg Ago 31, 2009 21:19

gostaria de saber como você resolveu as equações para chegar nos pontos A e B.
e vc poderia me explicar + ou - por cima o q significa cada alternativa da resposta, para qndo cair uma pergunta dessa eu saiba responder
grato pela sua ajuda
Dankaerte
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Ago 26, 2009 16:37
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: não sei como chegar na resposta

Mensagempor Elcioschin » Seg Ago 31, 2009 23:27

Dankaerte

Sugiro que você dê uma estudada em Geometria Analítica - Equações da Circunferência.
Estude também em Geometria Plana - Posições Relativas de Duas Circunferências.
As suas perguntas demonstram que você desconhece a teoria básica sobre o assunto.
Sem a teoria básica você não terá condições de resolver nenhum problema a respeito.
Vou tentar responder as suas dúvidas de maneira sucinta. Para saber o porquê, estude.

Equação Reduzida da Circunferência ----> (x - a)² + (y - b)² = R²

Nesta equação o centro C da circunferência é dado por ----> C(a, b) e o raio vale R

Compare com a sua equação e suas perguntas estarão respondidas.

Alternativas

Duas circunferências situadas no mesmo plano podem ter:

1) Coincidentes: quando tem o mesmo centro e o mesmo raio.
2) Concêntricas: quando tem o mesmo centro e raios diferentes.
3) Concorrentes: quando tem centros diferentes e se cortam em dois pontos diferentes.
4) Tangentes: quando tem centros diferentes e se tocam em um único ponto.
.... Podem ser tangentes internamente (uma fica dentro da outra) ----> d = R - R'
.... Podem ser tangentes externamente ----> d = R + R'
5) Nenhum ponto de contato ----> d > R + R'
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D