por Dankaerte » Seg Ago 31, 2009 17:05
o exercício é o seguinte:
as equações (x+1)²+(y-4)²=64 e (x-4)²+(y+8)²=25 representam duas circunferências cuja posição relativa no plano permite afirmar que são:
a)interiores (sem ponto de intersecção)
b)tangentes exteriores
c)tangentes interiores
c)exteriores (sem ponto de intersecção)
d)secantes
tentei resolver:
(x+1)²+(y-4)²=64 (x-4)²+(y+8)²=25
x²+2x+1+y²-12y+16=64 x²-12x+16+y²+16y+64=25
x²+y²+2x-12y+17=64 x²+y²-12x+16y+80=25
x²+y²+2x-12y=47 x²+y²-12x+16y=-55
agora depois daqui não sei mais como prosseguir, alguém poderia me ajudar?
-
Dankaerte
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Qua Ago 26, 2009 16:37
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Elcioschin » Seg Ago 31, 2009 20:29
Você complicou:
(x + 1)² + (y - 4)² = 8² ----> Circunferência com centro A(-1, 4) e raio R = 8
(x - 4)² + (y + 8)² = 5² ----> Circunferência com centro B(4, -8) e raio R' = 5
Distância entre os centros A e B ----> d² = (xA - xB)² + (yA - yB)² ---->
d² = (-1 - 4)² + [4 - (-8)]² ----> d² = 25 + 144 ----> d² = 169 -----> d = 13
R + R' = 8 + 5 ----> R + R' = 13
Como R + R' = d as duas circunferências são tangentes entre sí exteriormente ----> Alternativa B.
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por Dankaerte » Seg Ago 31, 2009 21:19
gostaria de saber como você resolveu as equações para chegar nos pontos A e B.
e vc poderia me explicar + ou - por cima o q significa cada alternativa da resposta, para qndo cair uma pergunta dessa eu saiba responder
grato pela sua ajuda
-
Dankaerte
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Qua Ago 26, 2009 16:37
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Elcioschin » Seg Ago 31, 2009 23:27
Dankaerte
Sugiro que você dê uma estudada em Geometria Analítica - Equações da Circunferência.
Estude também em Geometria Plana - Posições Relativas de Duas Circunferências.
As suas perguntas demonstram que você desconhece a teoria básica sobre o assunto.
Sem a teoria básica você não terá condições de resolver nenhum problema a respeito.
Vou tentar responder as suas dúvidas de maneira sucinta. Para saber o porquê, estude.
Equação Reduzida da Circunferência ----> (x - a)² + (y - b)² = R²
Nesta equação o centro C da circunferência é dado por ----> C(a, b) e o raio vale R
Compare com a sua equação e suas perguntas estarão respondidas.
Alternativas
Duas circunferências situadas no mesmo plano podem ter:
1) Coincidentes: quando tem o mesmo centro e o mesmo raio.
2) Concêntricas: quando tem o mesmo centro e raios diferentes.
3) Concorrentes: quando tem centros diferentes e se cortam em dois pontos diferentes.
4) Tangentes: quando tem centros diferentes e se tocam em um único ponto.
.... Podem ser tangentes internamente (uma fica dentro da outra) ----> d = R - R'
.... Podem ser tangentes externamente ----> d = R + R'
5) Nenhum ponto de contato ----> d > R + R'
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Porcentagem...(como chegar na resposta?)
por Dyego » Sex Mar 26, 2010 13:45
- 1 Respostas
- 4346 Exibições
- Última mensagem por Dan

Sex Mar 26, 2010 16:31
Matemática Financeira
-
- Como faço para chegar na resposta destas funções?
por Dyego » Sex Mar 26, 2010 02:43
- 2 Respostas
- 1640 Exibições
- Última mensagem por Dyego

Sex Mar 26, 2010 12:03
Funções
-
- FUNÇÃO NÃO CONSIGO CHEGAR À RESPOSTA CERTA
por DIEGO ALVES LOPES » Sáb Abr 11, 2009 01:53
- 1 Respostas
- 2588 Exibições
- Última mensagem por Molina

Sáb Abr 11, 2009 04:26
Funções
-
- [Sistema Linear Impossivel]Não consigo chegar a resposta.
por Eduardo_rez » Seg Ago 18, 2014 22:59
- 2 Respostas
- 5286 Exibições
- Última mensagem por Eduardo_rez

Ter Ago 19, 2014 15:26
Sistemas de Equações
-
- Como chegar na equação
por Rafael16 » Sex Nov 23, 2012 19:12
- 2 Respostas
- 1576 Exibições
- Última mensagem por DanielFerreira

Sex Nov 23, 2012 20:52
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.