por Malorientado » Qua Set 12, 2012 01:17
No sistema
(1- a)x+y+z=0
x+(1-a)y+z=0
x+y+(1-a)z=0
Para descobrir a para 0 sistema seja possível e indeterminado basta calcular onde o determinante dos coeficientes é igual a 0, correto? Calculando esse determinante, obtive a³+ 3a²=0. Está certo? Como continuo agora?
-
Malorientado
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Seg Ago 06, 2012 23:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MarceloFantini » Qua Set 12, 2012 08:25
O determinante que encontrei foi

. Agora iguale isto a zero fazendo

, de onde segue que

e

. Estes são os valores que tornam o sistema possível e indeterminado.
Por favor, utilize LaTeX nas suas postagens.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [sistema linear homogeneo] Como resolver esse sistema
por amigao » Qua Jul 02, 2014 14:49
- 1 Respostas
- 2921 Exibições
- Última mensagem por Russman

Qua Jul 02, 2014 18:38
Álgebra Linear
-
- Sistema Homogêneo
por Danilo Dias Vilela » Sex Set 25, 2009 00:42
- 1 Respostas
- 1464 Exibições
- Última mensagem por Elcioschin

Sex Set 25, 2009 13:40
Sistemas de Equações
-
- [Centro de gravidade] Bloco homogeneo em repouso plano incli
por gustavoluiss » Seg Nov 07, 2011 07:54
- 5 Respostas
- 4530 Exibições
- Última mensagem por Neperiano

Seg Nov 07, 2011 15:39
Geometria Analítica
-
- [Sistema Linear] MACK-SP: Sistema de Equações
por ALF » Sex Ago 26, 2011 13:24
- 1 Respostas
- 4313 Exibições
- Última mensagem por LuizAquino

Dom Ago 28, 2011 12:57
Sistemas de Equações
-
- [SISTEMA] problema que envolve um sistema
por brunnkpol » Qui Jan 02, 2014 22:57
- 2 Respostas
- 2551 Exibições
- Última mensagem por brunnkpol

Seg Jan 06, 2014 21:37
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.