por caducustodio » Sex Ago 17, 2012 09:00
CLASSIFIQUE E RESOLVA O SISTEMA:
x + 5y - z = -5
y + 2z = 6
x - 3z = -11
-
caducustodio
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Qua Ago 15, 2012 18:56
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: cursando
por Cleyson007 » Sex Ago 17, 2012 09:50
Olá, bom dia!
x + 5y - z = -5
y + 2z = 6 ---------------> y = 6 - 2z (I)
x - 3z = -11 --> x = -11 + 3z (II)
Substituindo (I) e (II) na equação x + 5y - z = -5, temos: -11 + 3z +5 (6 -2z) - z = -5 --> -11 + 3z +30 -10z - z = -5 -->
z = 3 Substituindo o valor de z em (II), temos: x = -11 + 3(3) -->
x = -2Substituindo os valores de z e x em x + 5y - z = -5, temos: -2 + 5y -(3) = -5 --> -2 + 5y -3 = -5 -->
y = 0Classificação: SPD
Comente qualquer dúvida

-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Alguém pode me ajudar neste problema?
por katiapazini » Ter Out 28, 2008 20:24
- 2 Respostas
- 3495 Exibições
- Última mensagem por admin

Qua Out 29, 2008 01:52
Números Complexos
-
- Alguem pode me ajudar com este exercício?
por phvicari » Sáb Fev 18, 2012 16:19
- 2 Respostas
- 1571 Exibições
- Última mensagem por phvicari

Sáb Fev 18, 2012 23:12
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Alguém pode me ajudar com este exercicio
por carvalhothg » Dom Set 04, 2011 18:40
- 1 Respostas
- 1749 Exibições
- Última mensagem por LuizAquino

Dom Set 04, 2011 20:19
Cálculo: Limites, Derivadas e Integrais
-
- Alguem pode ajudar não compreendi muito bem esse exercicio
por joaoalbertotb » Ter Set 01, 2009 14:08
- 11 Respostas
- 6707 Exibições
- Última mensagem por Elcioschin

Qui Set 03, 2009 17:02
Sistemas de Equações
-
- Alguem pode ajudar-me?
por carlos r m oliveira » Seg Out 05, 2009 11:35
- 1 Respostas
- 2537 Exibições
- Última mensagem por Neperiano

Dom Jul 03, 2011 21:05
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.