• Anúncio Global
    Respostas
    Exibições
    Última mensagem

13) MPU

13) MPU

Mensagempor Raphael Feitas10 » Seg Jul 16, 2012 17:56

Para construir um muro,João levaria 30 dias e Carlos levaria 25 dias. Os dois começam a trabalhar juntos,mas apôs 6 dias João deixa o trabalho, 2 dias apôs a saida deste, Carlos também abandona. Antônio sozinho, consegue terminá-lo em 24 dias. Para realizar a construção do muro sozinho, Antônio levaria. R: 50 dias

Galera me ajuda aew eu tentei fazer ela assim mas ñ consegui desde de já muito agradecido...


Os dois juntos começaram fazendo \frac{1}{30}+\frac{1}{25}=\frac{11}{150}


Depois de 6 dias joão deixa o trabalho fizeram então \frac{66}{150}

Depois de 2 dias Carlos também abandona o trabalho no caso ele fez \frac{132}{150}

Restando \frac{18}{150} que equivale á 24 dias, pra fazer o serviço todo vai dá achei 200 mais ñ bate com a resposta...
Raphael Feitas10
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 162
Registrado em: Ter Jan 04, 2011 20:10
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: 13) MPU

Mensagempor DanielFerreira » Seg Jul 16, 2012 20:37

Raphael Feitas10 escreveu:Para construir um muro,João levaria 30 dias e Carlos levaria 25 dias. Os dois começam a trabalhar juntos,mas após 6 dias João deixa o trabalho, 2 dias após a saida deste, Carlos também abandona. Antônio sozinho, consegue terminá-lo em 24 dias. Para realizar a construção do muro sozinho, Antônio levaria. R: 50 dias

Rafhael,
fiz assim:
Considerando k o muro 100% construído

\frac{1}{T_t} = \frac{1}{T_1} + \frac{1}{T_2} ==> T_t = \frac{T_1 \times T_2}{T_1 + T_2} ==> T_t = \frac{150}{11}

Esse valor encontrado (acima), representa o tempo total que João e Carlos levariam juntos para construir o muro;

Apliquemos uma regra de três simples para determinar o quanto o muro foi construído pelos dois em 6 dias; chamei de a.

\frac{150}{11}dias ---------------------- k
6 dias ----------------------------- a
(dir.)

Teremos a = \frac{11k}{25}

Ou seja, nos 6 dias de trabalho João e Carlos construíram \frac{11k}{25} do muro, resta-nos saber quanto falta do muro. Portanto,

k - \frac{11k}{25} = \frac{14k}{25}

Depois de 2 dias Carlos abandona, então o raciocínio é análogo ao anterior, só que, com os números de Carlos, veja:

k ---------------------- 25 dias
b ---------------------- 2 dias
(dir.)

Teremos b = \frac{2k}{25}

Isto é, trabalhando sozinho Carlos levantou \frac{2k}{25} do muro, calculemos quanto falta para terminar o muro:

\frac{14k}{25} - \frac{2k}{25} = \frac{12k}{25}

Daí,

\frac{12k}{25} ---------------------- 24 dias
k ------------------------- x
(dir.)

\fbox{x = 50}

Espero ter ajudado!

Retorne em caso de dúvidas.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Sistemas de Equações

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D