• Anúncio Global
    Respostas
    Exibições
    Última mensagem

13) MPU

13) MPU

Mensagempor Raphael Feitas10 » Seg Jul 16, 2012 17:56

Para construir um muro,João levaria 30 dias e Carlos levaria 25 dias. Os dois começam a trabalhar juntos,mas apôs 6 dias João deixa o trabalho, 2 dias apôs a saida deste, Carlos também abandona. Antônio sozinho, consegue terminá-lo em 24 dias. Para realizar a construção do muro sozinho, Antônio levaria. R: 50 dias

Galera me ajuda aew eu tentei fazer ela assim mas ñ consegui desde de já muito agradecido...


Os dois juntos começaram fazendo \frac{1}{30}+\frac{1}{25}=\frac{11}{150}


Depois de 6 dias joão deixa o trabalho fizeram então \frac{66}{150}

Depois de 2 dias Carlos também abandona o trabalho no caso ele fez \frac{132}{150}

Restando \frac{18}{150} que equivale á 24 dias, pra fazer o serviço todo vai dá achei 200 mais ñ bate com a resposta...
Raphael Feitas10
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 162
Registrado em: Ter Jan 04, 2011 20:10
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: 13) MPU

Mensagempor DanielFerreira » Seg Jul 16, 2012 20:37

Raphael Feitas10 escreveu:Para construir um muro,João levaria 30 dias e Carlos levaria 25 dias. Os dois começam a trabalhar juntos,mas após 6 dias João deixa o trabalho, 2 dias após a saida deste, Carlos também abandona. Antônio sozinho, consegue terminá-lo em 24 dias. Para realizar a construção do muro sozinho, Antônio levaria. R: 50 dias

Rafhael,
fiz assim:
Considerando k o muro 100% construído

\frac{1}{T_t} = \frac{1}{T_1} + \frac{1}{T_2} ==> T_t = \frac{T_1 \times T_2}{T_1 + T_2} ==> T_t = \frac{150}{11}

Esse valor encontrado (acima), representa o tempo total que João e Carlos levariam juntos para construir o muro;

Apliquemos uma regra de três simples para determinar o quanto o muro foi construído pelos dois em 6 dias; chamei de a.

\frac{150}{11}dias ---------------------- k
6 dias ----------------------------- a
(dir.)

Teremos a = \frac{11k}{25}

Ou seja, nos 6 dias de trabalho João e Carlos construíram \frac{11k}{25} do muro, resta-nos saber quanto falta do muro. Portanto,

k - \frac{11k}{25} = \frac{14k}{25}

Depois de 2 dias Carlos abandona, então o raciocínio é análogo ao anterior, só que, com os números de Carlos, veja:

k ---------------------- 25 dias
b ---------------------- 2 dias
(dir.)

Teremos b = \frac{2k}{25}

Isto é, trabalhando sozinho Carlos levantou \frac{2k}{25} do muro, calculemos quanto falta para terminar o muro:

\frac{14k}{25} - \frac{2k}{25} = \frac{12k}{25}

Daí,

\frac{12k}{25} ---------------------- 24 dias
k ------------------------- x
(dir.)

\fbox{x = 50}

Espero ter ajudado!

Retorne em caso de dúvidas.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Sistemas de Equações

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59