• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Procura das Idades.

Procura das Idades.

Mensagempor Cleyson007 » Qui Ago 06, 2009 12:12

Olá, bom dia!

Estou encontrando dificulde para montar as equações do problema que segue. Alguém pode me ajudar?

--> Se o Adriano tivesse 3 anos a menos do que tem e se o Bruno tivesse 5 anos mais do que tem,a diferença dos quadrados de suas idades e mais o triplo da idade que o Bruno tinha há 6 anos atrás seria igual a 1848.Hoje o produto de suas idades mais o quadrado da idade do Adriano daqui a 9 anos será igual a 5737.Qual a idade de cada um hoje?

Estou fazendo assim:

*Chamando de A --> Idade do Adriano
*Chamando de B --> Idade do Bruno

Teria, A-3

B+5

Quanto a outra parte do problema: A-3+b+5={A}^{2}-{B}^{2}+3B-6=1848

Seria isso?

Agradeço sua ajuda.

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Procura das Idades.

Mensagempor Felipe Schucman » Qui Ago 06, 2009 19:46

Bom Dia,

Cleyson007 escreveu:Olá, bom dia!

Estou encontrando dificulde para montar as equações do problema que segue. Alguém pode me ajudar?

--> Se o Adriano tivesse 3 anos a menos do que tem e se o Bruno tivesse 5 anos mais do que tem,a diferença dos quadrados de suas idades e mais o triplo da idade que o Bruno tinha há 6 anos atrás seria igual a 1848.Hoje o produto de suas idades mais o quadrado da idade do Adriano daqui a 9 anos será igual a 5737.Qual a idade de cada um hoje?



1)(A-3)^2 - (B+5)^2 + 3*(B-6) = 1848 ----->A^2 - 6A - B^2 - 7B = 1882

2) A*B + (A+9)^2 = 5737 ------------------->A*B + A^2 +18A = 5656 ---->A(B + A + 18) = 5656---> B= 5656/A - A - 18

Substituindo B na equação 1:

A^2 - 6A - (5656/A - A -18)^2 - 7*(5656/A - A -18) = 1882

Eu acho que resolvendo essa equação realmente grande deve se chegar ao resultado! To meio sem tempo mas tentarei resolver depois!Vou procurar um jeito mais facil!

Espero ter ajudado,

Um Abraço!
Felipe Schucman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 52
Registrado em: Ter Jul 28, 2009 17:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia e Direito
Andamento: cursando

Re: Procura das Idades.

Mensagempor Cleyson007 » Sex Ago 07, 2009 13:43

Boa tarde Felipe!

Eu também ando um pouco atarefado... mas vamos fazer o seguinte: vou analisar sua resolução e qualquer coisa comento no fórum, ok?

Amigo, agradeço sua ajuda!

Até mais.

Um abraço.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59