• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sistema Não-Linear de Equação] Resolução

[Sistema Não-Linear de Equação] Resolução

Mensagempor mdiego » Qui Jul 05, 2012 00:14

Queria saber de algum método matemático para estimar as incógnitas de um sistema de equações não linear ou de preferência alguma função pronta do Matlab que faça isso. Sendo que eu tenho 5 incógnitas e N equações (para N muito grande). Por exemplo:

x_1 + j\cdot(x_3+x_5) + \frac{x_5^2}{(x_2/a_n)+j\cdot(x_4+x_5)} + b_n = 0

j = \sqrt[]{-1}.

Os valores de a_n e b_n são conhecidos e medidos experimentalmente, ou seja, pode haver pequenas diferenças do valor real, por isso deve se tratar de um método de aproximação/estimação;

n varia de 1 até N.

x_i e a_n \in \Re.

b_n \in Complexos.

O sistema poderia ser escrito na forma: , mas ficaria mais extenso.


Agradeço desde já,
Diego.
mdiego
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Fev 07, 2012 21:38
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59