por Antony Shuazter » Seg Jun 18, 2012 09:40
Para saber se seus fatores correspondem a 2 ou 5, ou a 2 e 5 comumente? E assim ter certeza de que dê uma dízima periódica.
Por exemplo os fatores primos do número 320 é:

E de 180, como se descobre esses fatores?
-
Antony Shuazter
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Dom Mai 13, 2012 16:58
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Sistemas de Informação
- Andamento: cursando
por MarceloFantini » Ter Jun 19, 2012 01:33
Não existe algoritmo para descobrir os fatores primos. Você simplesmente vai testando por cada um.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Russman » Ter Jun 19, 2012 02:22
Se você descobrir, nos conte! Por que até hoje ninguem descobriu! kk
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Antony Shuazter » Ter Jun 19, 2012 11:45
Ah sim, achei que havia uma maneira fácil de descobrir isso, mas como vocês mesmo disseram, tem que ir testando, vou seguir com este método...rsrs. Só para confirmar vocês usam o método de dividir pelo menor fator primo possível sempre?
-
Antony Shuazter
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Dom Mai 13, 2012 16:58
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Sistemas de Informação
- Andamento: cursando
por Russman » Ter Jun 19, 2012 19:01
Vai dividindo por 2 até qe não dê mais resto zero. Depois por 3, depois por 5 e assim sucessivamente.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Antony Shuazter » Ter Jun 19, 2012 23:22
Russman escreveu:Vai dividindo por 2 até qe não dê mais resto zero. Depois por 3, depois por 5 e assim sucessivamente.
Valeu!
-
Antony Shuazter
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Dom Mai 13, 2012 16:58
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Sistemas de Informação
- Andamento: cursando
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Fatores primos
por GMAT2010 » Qua Fev 03, 2010 20:59
- 3 Respostas
- 1735 Exibições
- Última mensagem por GMAT2010

Sáb Fev 06, 2010 07:40
Funções
-
- como eu acho a taxa
por weverton » Qui Mai 20, 2010 03:12
- 6 Respostas
- 6840 Exibições
- Última mensagem por weverton

Qua Jun 23, 2010 17:48
Matemática Financeira
-
- Como eu acho os ângulos
por Balanar » Qua Set 01, 2010 01:04
- 5 Respostas
- 4525 Exibições
- Última mensagem por ednaldo1982

Sex Mar 30, 2012 00:46
Geometria Plana
-
- [Escalonamento de matrizes] Como acho C^-1
por Ronaldobb » Qui Abr 25, 2013 12:38
- 1 Respostas
- 1775 Exibições
- Última mensagem por DanielFerreira

Qui Abr 25, 2013 19:18
Álgebra Linear
-
- [plano cartesiano]Valor de k. Como acho?
por Flordelis25 » Sex Ago 02, 2013 19:29
- 6 Respostas
- 5546 Exibições
- Última mensagem por Flordelis25

Ter Ago 06, 2013 18:04
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.