• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Inequação modular], alguem me ajuda por favor

[Inequação modular], alguem me ajuda por favor

Mensagempor shyzum » Qua Mar 21, 2012 18:07

encontrei o seguinte exercício que eu não consigo fazer de jeito nenhum, por favor alguem me ajude

| x^2 - 1 | < x
shyzum
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mar 11, 2012 18:22
Formação Escolar: ENSINO MÉDIO
Área/Curso: engenharia
Andamento: cursando

Re: [Inequação modular], alguem me ajuda por favor

Mensagempor TAE » Qua Mar 21, 2012 20:51

...
“O tolo, quando erra,queixa-se dos outros; o sábio queixa-se de si mesmo.” (Sócrates, 469-399, AC).
TAE
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Ter Mar 20, 2012 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: TÉC. ELETRÔNICA
Andamento: formado

Re: [Inequação modular], alguem me ajuda por favor

Mensagempor Zetsu PN » Seg Abr 02, 2012 23:14

| x² - 1 | < x
Analisando o primeiro membro temos que:
| x² - 1 | = x² - 1 <=> x \leq -1 ou x \geq 1
| x² - 1 | = 1 - x² <=> -1 \leq x \leq 1
Para qualquer valor real de x elemento do intervalo [-1,1] a inequação será válida. Deve-se alisar, pois, para os valores do intervalos x \leq -1 ou x \geq 1

x² - x - 1 < 0
(delta) = 1 + 4 = 5
x' = \frac{(1 + \sqrt[2]{5} )}{2}

x" = \frac{(1 - \sqrt[2]{5} )}{2}

Portanto, a solução da inequação será o valor negativo de y, ou seja, o interior das raízes. Sendo assim:
S = { x e R | \frac{(1 + \sqrt[2]{5} )}{2} < x < \frac{(1 - \sqrt[2]{5} )}{2}}

(Sou novo no fórum e usei o site http://www.ajudamatematica.com/equationeditor/ para formular. Fui didático? :) )
Editado pela última vez por Zetsu PN em Seg Abr 02, 2012 23:41, em um total de 1 vez.
Zetsu PN
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Abr 02, 2012 22:06
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Inequação modular], alguem me ajuda por favor

Mensagempor MarceloFantini » Seg Abr 02, 2012 23:32

Falta apenas escrever [ tex] e [/ tex] sem o espaço entre as fórmulas para que o fórum transforme-as em imagens.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59