• Anúncio Global
    Respostas
    Exibições
    Última mensagem

sistema de segundo grau

sistema de segundo grau

Mensagempor alfabeta » Dom Mar 04, 2012 18:18

Sejam A (1, 0) e B (5, 4?3]) dois vértices de um triângulo equilátero ABC.?
O vértice C está no 2°quadrante. Encontre-o.
Distancia entre:
(1, 0) (5, 4?3)

separação de dois pontos = ?((x? - x?)² + (y? - y?)²)
d = ?((1 - 5)² + (0 - 4?3)²)
d = ?((-4)² + (-4?3)²)
d = ?(16 + 48)
d = ?64
d = 8

Cheguei neste sistema:
(x - 1)² + y² = 64 e (x - 5)² + (y - 4?3)² = 64

Como resolver?
alfabeta
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Fev 28, 2012 11:37
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: sistema de segundo grau

Mensagempor MarceloFantini » Dom Mar 04, 2012 20:04

Se ele está no segundo quadrante, teremos que x<0 e y>0. Como ABC é equilátero, teremos d(A,B) = d(A,C) = d(B,C), ou seja, as distâncias de A até B, A até C e B até C são iguais entre si. Use isto.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: sistema de segundo grau

Mensagempor alfabeta » Dom Mar 04, 2012 21:13

Eu fiz exatamente isto,mas cheguei no sistema de segundo grau e não sei resolver.
alfabeta
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Fev 28, 2012 11:37
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: sistema de segundo grau

Mensagempor LuizAquino » Dom Mar 04, 2012 22:46

alfabeta escreveu:Sejam A (1, 0) e B (5, 4?3) dois vértices de um triângulo equilátero ABC.
O vértice C está no 2°quadrante. Encontre-o.
Distancia entre:
(1, 0) (5, 4?3)

separação de dois pontos = ?((x? - x?)² + (y? - y?)²)
d = ?((1 - 5)² + (0 - 4?3)²)
d = ?((-4)² + (-4?3)²)
d = ?(16 + 48)
d = ?64
d = 8

Cheguei neste sistema:
(x - 1)² + y² = 64 e (x - 5)² + (y - 4?3)² = 64

Como resolver?


alfabeta escreveu:Eu fiz exatamente isto,mas cheguei no sistema de segundo grau e não sei resolver.


Note que tanto (x - 1)^2 + y^2 quanto (x - 5)^2 + \left(y - 4\sqrt{3}\right)^2 são iguais a 64. Desse modo, temos que:

(x - 1)^2 + y^2 = (x - 5)^2 + \left(y - 4\sqrt{3}\right)^2

Desenvolvendo essa equação, você obtém no final que:

y = -\dfrac{\sqrt{3}}{3}x + 3\sqrt{3}

Agora escolha uma das equações e substitua y por -\dfrac{\sqrt{3}}{3}x + 3\sqrt{3} .

Dessa forma, você terá uma equação com apenas a incógnita x. Resolvendo essa equação, você obtém o valor de x.

Em seguida, basta usar o fato de que y = -\dfrac{\sqrt{3}}{3}x + 3\sqrt{3} para determinar o valor de y.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)