• Anúncio Global
    Respostas
    Exibições
    Última mensagem

EDO de Segunda Ordem

EDO de Segunda Ordem

Mensagempor OtavioBonassi » Ter Nov 15, 2011 11:45

Bom dia galera, procurei aqui no fórum mas nao tinha nada específico sobre EDO (ou equação diferencial linear do segundo grau), entao resolvi criar esse tópico aqui em Sistemas de Equações.

A dúvida é a seguinte :
Numa EDO não homogênea de segunda ordem, da forma a(x) y''+ b(x) y' + c(x) y = d(x) , onde o d(x) possui uma função trigonométrica. Como eu procedo na resolução ? Tenho uma resposta "pronta" aqui ,ela está escrita na seguinte forma genérica :

Se d(x) está na forma :

d(x)= {e}^{u*x}[{P}_{n}(x)*cos(v*x) + {Q}_{m}(x)*sen(v*x)] , onde P e Q são polinomios de grau n e m respectivamente

Casos de resposta :

1°. u+- i*v não é raiz da equação característica -------> {y}_{n}(x) = {e}^{u*x}[{S}_{M}(x)*cos(v*x) + {T}_{M}(x)*sen(v*x)], M= max {m,n}

2°. u +- i*v é raiz da equação característica --------> {y}_{n}(x) = x*{e}^{u*x}[{S}_{M}(x)*cos(v*x) + {T}_{M}(x)*sen(v*x)], M= max {m,n}


A pergunta é .... o que DIABOS é {S}_{M} e {T}_{M} ? E o que é o "M= max {m,n}" ? Sei que é uma resolução feita e muita gente pode nao resolver desse jeito, mas é o que eu tenho pra resolver !

Valeu !
OtavioBonassi
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Qua Jan 05, 2011 14:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.