• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sistemas Lineares] Precisão do Método de Gauss-Seidel

[Sistemas Lineares] Precisão do Método de Gauss-Seidel

Mensagempor VFernandes » Qui Out 06, 2011 13:50

Caros amigos, primeiramente peço desculpas se o assunto foge um pouco do tema, mas foi a seção mais adequada que encontrei.
Tenho o seguinte problema em minhas mãos:
\begin{pmatrix}
   4 & -1 & 0  \\
   -2 & 3 & -1 \\ 
   -1 & -3 & 5
\end{pmatrix} \begin{pmatrix}
   {x}_{1}} \\
   {x}_{2}} \\ 
   {x}_{3}}
\end{pmatrix} =  \begin{pmatrix}
   2\\
   0 \\ 
   1
\end{pmatrix}
Calcule uma iteração por Gauss-Seidel, partindo de = (0,0,0) e estime quantas iterações são necessárias para que se atinja a precisão \epsilon = 0.0001
Bom, vamos lá:

{{x}_{1}}^{1} = \frac{1}{4}(2-(-1)\times0-0\times0)) = 0,5
{{x}_{2}}^{1} = \frac{1}{3}(0-(-2)\times0,5-(-1)\times0)) = 0,33
{{x}_{3}}^{1} = \frac{1}{5}(1-(-1)\times0,5-(-3)\times0,33)) = 0,5

\beta_1 = \frac{1}{4}(1+0) = 0,25
\beta_ = \frac{1}{3}(2\times0,25+1) = 0,5
\beta_3 = \frac{1}{5}(2\times0,25+3\times0,5) = 0,4 portanto,
M = 0.5 (maior dos betas)
Até aqui, sem problemas, a questão vem agora:
Sabemos que:
|x^*-x^k|\leq M^k max|x^*-x^0| portanto,
0.0001\leq 0,5^k |x^*-0|
o que não nos ajuda em muito, pois não sabemos x* (valor exato de x)
Alguma alma caridosa saberia como lidar com isso? Será que temos que delimitar um intervalo onde está contida a solução do sistema?
VFernandes
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mar 04, 2011 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Elétrica
Andamento: cursando

Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: