• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Exponencial

Equação Exponencial

Mensagempor umaiafilho » Sáb Mai 14, 2011 20:14

Resolver a equação:{16}^{1-x}+ {16}^{x}=10
umaiafilho
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qui Mai 12, 2011 20:47
Formação Escolar: GRADUAÇÃO
Área/Curso: CONTABEIS
Andamento: cursando

Re: Equação Exponencial

Mensagempor DanielRJ » Sáb Mai 14, 2011 20:17

umaiafilho escreveu:Resolver a equação:{16}^{1-x}+ {16}^{x}=10



Já é a quarta ou quinta questão que voce posta que exige somente um pouco de raciocio
Dá uma olha nas outras já respondidas essa é identica a que eu respondi.

Só uma ajudinha:

(16^x)^{-1}.16+16^x=10
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Equação Exponencial

Mensagempor SidneySantos » Sáb Mai 14, 2011 20:28

16^(1 - x) + 16^x = 10

16/16^x + 16^x = 10

16 + 16^(2x) = 10.16^x

16^(2x) - 10.16^x + 16 = 0

y = 16^x

y² - 10y + 16 = 0

y' = 2 e y" = 8

Para y' = 2

y = 16^x ---> y = 2^(4x)

2^(4x) = 2¹

x' = 1/4

y" = 8

2^(4x) = 2³

x" = 3/4
Um forte abraço e bom estudo!!!
SidneySantos
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Qua Abr 20, 2011 07:47
Localização: Belém - Pará
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Educaçao Matemática
Andamento: cursando

Re: Equação Exponencial

Mensagempor umaiafilho » Sáb Mai 14, 2011 20:45

Obrigado!

Daniel e Sidney
umaiafilho
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qui Mai 12, 2011 20:47
Formação Escolar: GRADUAÇÃO
Área/Curso: CONTABEIS
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.