• Anúncio Global
    Respostas
    Exibições
    Última mensagem

preciso de ajuda

preciso de ajuda

Mensagempor arima » Qui Nov 25, 2010 12:30

Como resolver sistema linear dada a resolução x =5+2t y=t encontrar a equação linear.
Como resolver uma sistem a eu sei mas com o resultado para chegar na equação ta dificil.Ja avia mandado uma mensagem antes mas não tive resposta.
arima
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sáb Out 23, 2010 18:25
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matematica
Andamento: cursando

Re: preciso de ajuda

Mensagempor girl » Qui Nov 25, 2010 13:42

Como y = t é só substituir em x= 5 + 2t e vc achara o resultado
girl
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Out 24, 2010 10:55
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: preciso de ajuda

Mensagempor arima » Qui Nov 25, 2010 13:47

Obrigada. Tem exercício que esta na cara da gente e a gente não ve. obrigada novamente.
arima
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sáb Out 23, 2010 18:25
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matematica
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.