• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Matrizes] Comutatividade .

[Matrizes] Comutatividade .

Mensagempor e8group » Ter Jul 10, 2012 22:16

Seja A e B duas matrizes de tal ordem que exista AB e BA .A pergunta é , Quais as condições para AB = BA ? Parece que quando temos o produto de matrizes diagonais temos a comutatividade do produto ,certo? Me informe um exemplo ou estabeleça uma condição para AB = BA .

Aguardo ajuda .

Desde já ,Obrigado .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Matrizes] Comutatividade .

Mensagempor MarceloFantini » Ter Jul 10, 2012 23:32

Se B for a matriz inversa, ortogonal ou unitária em relação a A, então AB=BA, e mais, AB=1, onde 1 é a matriz identidade. Ser diagonal também é uma condição para comutarem. A questão é que muito difícil, dadas duas matrizes genéricas, descobrir se o produto comuta ou não.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Matrizes] Comutatividade .

Mensagempor e8group » Qui Jul 12, 2012 01:00

Ok ,excelente explicação ,grato .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Matrizes] Comutatividade .

Mensagempor e8group » Sáb Jul 14, 2012 11:47

(Marcelo Fantini e demais usuários do ajuda mat.) Aproveitando o tópico para ampliar o conhecimento , a parti de uma matriz quadrada (identidade ) ou (diagonal ) eu consigo obter uma matriz genérica tal que exista a comutatividade do produto .

Exemplo : se A =\begin{pmatrix}  z & 0\\ 0 &w\end{pmatrix} ,z,w \in\Re ou A = I .

Ou seja para ambos casos existe uma matriz B tal que AB = BA .Entretanto para duas matrizes genéricas A = \begin{pmatrix} x & z \\ w & y \end{pmatrix} , [A]_{ij} \in \Re e B =\begin{pmatrix} a & b \\ c & d\end{pmatrix},[B]_{ij} \in \Re

Será que eu consigo estabelecer uma condição para AB = BA através de um sistema linear de tal forma que [AB]_{ij} = [BA]_{ij} ?

Eu fiz isso mas chegou em um ponto difícil de obter uma condição que satisfaz cada equação ,analiticamente impossível . Será que com algum software tais como wxMaxima e etc consigo encontrar algo ?

Será que isso realmente prova uma condição para comutação do produto ?

Obrigado .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}