• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Matrizes e Determinantes]

[Matrizes e Determinantes]

Mensagempor angela sofia Pereira » Sáb Nov 12, 2011 11:39

considerando a seguinte matriz pede-se para calcular o determinante da matriz como função de x e y por expansão de Laplace, explicitando os pontos x e y para os quais a matriz é invertivel. Já tentei resolver de várias formas mas não chego a nenhuma conclusão, pedia um pequeno auxilio para solucionar esta questão.
\begin{pmatrix}
    1 & x & 2  \\ 
    3 & y & 2  \\
    2 & 1 & 6  
\end{pmatrix}
angela sofia Pereira
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Nov 12, 2011 10:42
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: matemática
Andamento: cursando

Re: [Matrizes e Determinantes]

Mensagempor LuizAquino » Sáb Nov 12, 2011 12:27

angela sofia Pereira escreveu:considerando a seguinte matriz pede-se para calcular o determinante da matriz como função de x e y por expansão de Laplace, explicitando os pontos x e y para os quais a matriz é invertivel. Já tentei resolver de várias formas mas não chego a nenhuma conclusão, pedia um pequeno auxilio para solucionar esta questão.
\begin{pmatrix} 1 & x & 2 \\ 3 & y & 2 \\ 2 & 1 & 6 \end{pmatrix}


Por favor, envie a sua resolução para que possamos identificar o erro.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Matrizes e Determinantes]

Mensagempor angela sofia Pereira » Sáb Nov 12, 2011 15:17

LuizAquino escreveu:
angela sofia Pereira escreveu:considerando a seguinte matriz pede-se para calcular o determinante da matriz como função de x e y por expansão de Laplace, explicitando os pontos x e y para os quais a matriz é invertivel. Já tentei resolver de várias formas mas não chego a nenhuma conclusão, pedia um pequeno auxilio para solucionar esta questão.
\begin{pmatrix} 1 & x & 2 \\ 3 & y & 2 \\ 2 & 1 & 6 \end{pmatrix}


Por favor, envie a sua resolução para que possamos identificar o erro.

boa tarde, a minha duvida é se o que é pedido é apenas o determinante desta matriz que já calculei e dava 2y-14x+4 ou se em primeiro lugar tenho de achar as variáveis x e y de n sei como fazer, no manual não encontro nada que se assemelhe ou então não estou mesmo a perceber, visualizei em outros sitios e existia uma forma de calcular as variáveis apartir da transpota ou seja a matriz x se esta fosse simétrica seria igual á sua transposta e ficaria com x= 3 e y= 0 mas os valores da matriz teriam de ser identicos à transposta, e não me dá isso, e tentei pela forma antisimétrica e tambem os valores não são idênticos, e fiquei nesse impasse, pelo o que penso eu tenho de saber primeiro os valores de x e y só não estou a ver como faze-lo. Não saberei se esta matriz é invertivel se não tiver o valor do determinante que terá de ser diferente de zero. Porque a pergunta b tambem refere diversos valores para x e y e pede para justificar em qual deles é invertivel e após as diversas contas não me dá menhum valor igual ao pretendido, peço desculpa desde já de não colocar aqui todas as contas e são muitas mas a minha prática em latex é muito pouca e levaria muito tempo.se esta matriz não tivesse as váriáveis o resto eu sei fazer, mas realmente bloquiei nesta parte. Agradeço desde já a vossa disponibilidade e muito boa tarde, Cumprimentos
angela sofia Pereira
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Nov 12, 2011 10:42
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: matemática
Andamento: cursando

Re: [Matrizes e Determinantes]

Mensagempor LuizAquino » Sáb Nov 12, 2011 19:06

angela sofia Pereira escreveu:(...) a minha duvida é se o que é pedido é apenas o determinante desta matriz que já calculei e dava 2y-14x+4 ou se em primeiro lugar tenho de achar as variáveis x e y de n sei como fazer (...)


Na primeira parte do enunciado do exercício está escrito: "considerando a seguinte matriz pede-se para calcular o determinante da matriz como função de x e y por expansão de Laplace (...)"

Portanto, primeiro pede-se para calcular o determinante por expansão de Laplace. Nesse caso, você irá obter:

d = 2y - 14x + 4

Já na segunda parte do enunciado do exercício está escrito: "(...) explicitando os pontos x e y para os quais a matriz é invertível. (...)"

Portanto, em segundo lugar pede-se para determinar que pontos (x, y) tornam a matriz inversível.

Para possuir inversa, o determinante dessa matriz deve ser diferente de zero. Ou seja, deve ocorrer:

d\neq 0 \Rightarrow 2y - 14x + 4 \neq 0

Nesse caso, os pontos (x, y) para os quais a matriz possui inversa estão no conjunto:

S = \{(x,\,y)\in \mathb{R}^2 \, \mid \, y \neq  7x - 2\}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Matrizes e Determinantes]

Mensagempor angela sofia Pereira » Sáb Nov 12, 2011 21:48

boa noite, agradeço imenso a ajuda prestada agora já percebi o que era pedido.
Cumprimentos
Ângela Pereira
angela sofia Pereira
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Nov 12, 2011 10:42
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: matemática
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?