por Manoella » Sex Jan 14, 2011 20:40
Alguém poderia mim ajudar a resolver essa questão:
É possível existir uma transformação linear T: R^3?R^2? Por quê?
-
Manoella
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Qui Dez 16, 2010 09:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por MarceloFantini » Sáb Jan 15, 2011 19:51
Sim, é possível. Porque? Porque sim. Porque NÃO existiria? Qual é o motivo da sua dúvida? Dimensões diferentes?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Manoella » Seg Jan 17, 2011 10:17
Manoella escreveu:Alguém poderia mim ajudar a resolver essa questão:
É possível existir uma transformação linear T: R^3?R^2? Por quê?
Olá Minha querida Fantini.Minha duvida é como provar que isso ai é uma transformação Linear.Por favor ajude mim!
-
Manoella
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Qui Dez 16, 2010 09:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por Renato_RJ » Qui Jan 20, 2011 21:03
Manoella,
T será uma transformação linear se a função T preservar as operações de adição e multiplicação por escalar, isto é, se satisfizer as condições abaixo:



Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [algebra linear transformações lineares] operadores lineares
por Ramses » Qui Mar 31, 2016 17:31
- 1 Respostas
- 5360 Exibições
- Última mensagem por adauto martins

Sáb Abr 02, 2016 13:05
Álgebra Linear
-
- Transformações lineares - Transformações no Plano (T:R^2..)
por talesalberto » Qui Nov 06, 2014 11:05
- 0 Respostas
- 1114 Exibições
- Última mensagem por talesalberto

Qui Nov 06, 2014 11:05
Álgebra Linear
-
- transformações lineares
por bebelo32 » Sex Dez 05, 2014 17:31
- 1 Respostas
- 1134 Exibições
- Última mensagem por adauto martins

Sex Dez 05, 2014 17:44
Álgebra Linear
-
- transformações lineares
por bebelo32 » Sáb Dez 06, 2014 14:50
- 1 Respostas
- 1122 Exibições
- Última mensagem por adauto martins

Sáb Dez 06, 2014 15:57
Álgebra Linear
-
- transformações lineares
por bebelo32 » Dom Dez 07, 2014 16:54
- 1 Respostas
- 1343 Exibições
- Última mensagem por adauto martins

Seg Dez 08, 2014 18:32
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.