• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinantes

Determinantes

Mensagempor Cleyson007 » Dom Jul 20, 2008 11:55

Olá, bom dia!!!

Estou com uma questão de determinantes para resolver, e gostaria de saber se está correto o procedimento por mim adotado para a resolução da mesma. Desde já agradeço a atenção de todos.

A questão é essa----> Dada A=
\begin{vmatrix}
   -3 & 0 & {a}^{2}-1 & 0\\ 
    0 & 2 &    0      & 0 \\
    5 & 3 & -1 & 2\\
    a+2 & -1 & 0 & 0\\ 
\end{vmatrix}.

(a) Determine todos os valores de a\in R (conjunto dos números reais), para que detA = 0.
(b) Escolha um destes valores de a e, para este valor escolhido, dê exemplos de matrizes colunas {B}_{1} e {B}_{2} (4x1) tais queAX={B}_{1} tenha solução e AX={B}_{2} não tenha.

A letra (a) resolvi da seguinte maneira ---> Optei por calcular o determinante de {a}_{22} (por ser a linha que contém o maior número de zeros).

Resolvendo o determinante pelo cofator do elemento {a}_{22}, encontrei a seguinte equação: {2a}^{3}+{4a}^{2}-2a-4

Resolvendo a equação, encontrei a=+1, a=-1 e a=-2.

Quanto a (b) não consegui entender o enunciado, gostaria que me desse alguma dica a fim de que compreenda o mesmo!!!

:?: :?: :?: A resolução da pergunta (a) está correta :?: :?: :?:

Forte abraço!!!
Até mais. :D
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1227
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Determinantes

Mensagempor admin » Dom Jul 20, 2008 18:58

Olá Cleyson, boa tarde!

Sugiro alterações em alguns detalhes de seu tópico.

Cleyson007 escreveu:A questão é essa----> Dada A=
\begin{vmatrix}
-3 & 0 & {a}^{2}-1 & 0\\ 
0 & 2 & 0 & 0 \\
5 & 3 & -1 & 2\\
a+2 & -1 & 0 & 0\\ 
\end{vmatrix}.

(a) Determine todos os valores de a\in R (conjunto dos números reais), para que detA = 0.
(b) Escolha um destes valores de a e, para este valor escolhido, dê exemplos de matrizes colunas {B}_{1} e {B}_{2} (4x1) tais queAX={B}_{1} tenha solução e AX={B}_{2} não tenha.


Pelos itens do enunciado, entendemos que A é uma matriz. Entretanto, você escreveu A como já sendo um determinante.
No LaTeX, substitua "vmatrix" por "bmatrix", vem de brackets (colchetes - []).


Cleyson007 escreveu:A letra (a) resolvi da seguinte maneira ---> Optei por calcular o determinante de {a}_{22} (por ser a linha que contém o maior número de zeros).


Cleyson, a_{22} é um elemento da matriz. Você escreveu algo diferente do pretendido.
O determinante de a_{22} (entendemos como o determinante de uma matriz de ordem 1 cujo a_{22} é o único elemento) seria o próprio a_{22}.


Cleyson007 escreveu:Resolvendo o determinante pelo cofator do elemento {a}_{22}, encontrei a seguinte equação: {2a}^{3}+{4a}^{2}-2a-4


Cuidado, não há equação aí, não há o símbolo de igualdade.
De qualquer forma, também resolvi o problema e constatei que:

D_{22} = 2a^3 + 4a^2-2a-4

Mas atenção, pois:

\left| A \right| = a_{22} \cdot (-1)^{2+2}\cdot D_{22}

\left| A \right| = 2 \cdot D_{22}

\left| A \right| = 2 \cdot (2a^3 + 4a^2-2a-4)

\left| A \right| = 4a^3 + 8a^2-4a-8

Mas como queremos analisar a condição \left| A \right| = 0, o fator 2 não influenciará nas raízes desta cúbica:

4a^3 + 8a^2-4a-8 = 0

Pois, dividindo ambos os membros por 2, igualmente teremos:

2a^3 + 4a^2-2a-4 = 0

Ou ainda:

a^3 + 2a^2-a-2 = 0

Cleyson007 escreveu:Resolvendo a equação, encontrei a=+1, a=-1 e a=-2.


Suas raízes estão corretas, mas seria interessante você também comentar como conseguiu obtê-las!



Sobre o item (b), X é uma matriz.
E pela definição de produto, se B_1 e B_2 são matrizes 4x1, X também deverá ser 4x1. Ou seja, é da forma:

X = 
\begin{bmatrix}
   a \\ 
   b \\ 
   c \\ 
   d
\end{bmatrix}

Em outras palavras, o item pede para que você represente estes produtos como sistemas lineares.

Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 886
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?