• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz & Determinante

Matriz & Determinante

Mensagempor Colton » Qua Out 13, 2010 12:56

+
+

Olá pessoal

Estou com problemas para resolver duas questões de matrizes:

a) Prove que o determinante da matriz

a^2 (a+2)^2 (a+4)^2
(a+2)^2 (a+4)^2 (a+6)^2
(a+4)^2 (a+6)^2 (a+8)^2

é igual a -2^9.

este eu resolvi, porém desenvolvendo os produtos e potências, o que foi muito trabalhoso...será que há uma maneira mais simples utilizando as propiedades?

b) Mostre que o determinante da matriz:

cos(x+a) sen(x+a) 1
cos(x+b) sen(x+b) 1
cos(x+c) sen(x+c) 1

é independente de x.

este eu não consegui resolver. Na tentativa de desenvolver o determinante, acabo chegando a uma “salada” de senos e cossenos onde não encontro uma saída...seja diretamente, seja tentando o teorema de Cauchy (para cair numa equação)!

Espero que haja alguém aí para me dar uma orientação.

Colton

+
+
Colton
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Jul 25, 2010 17:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado

Re: Matriz & Determinante

Mensagempor Colton » Qua Out 20, 2010 10:02

+
+

Olá todos!

Não tendo recebido nenhum comentário à minha questão e tendo resolvido no ínterim a questão colocada e à falta de uma melhor orientação EU MESMO respondo:

301. Mostre que o determinante da matriz
{[cos(x+a), sen(x+a), 1], [cos(x+b), sen(x+b), 1], [cos(x+c), sen(x+c), 1]}
é independente de x.

(i) Aplicando primeiro a troca de filas paralelas detM’ = – detM
– {[1, cos(x+a), sen(x+a)], [1, cos(x+b), sen(x+b)], [1, cos(x+c), sen(x+c)]}
e em seguida a regra de Chió, o determinante se calcula com a “inocente” diferença de produtos:
– { [(cos(x+b) – cos(x+a)) . (sen(x+c) – sen(x+a))] –
– [(cos(x+c) – cos(x+a)) . (sen(x+b) – sen(x+a)]}

(ii) Desenvolvendo esta diferença de produtos obtemos 24 produtos individuais,
sendo 12 do tipo: +senx.cosx.cosa.cosc
–senx.cosx.cosa.cosb
–senx.cosx.sena.cosc, etc
que convenientemente agrupados dois a dois se ANULAM
e 12 produtos do tipo: sen^2x.sena.cosb
+cos^2x.sena.cosb
– sen^2x.sena.cosc, etc
que convenientemente agrupados dois a dois NÃO se anulam, mas em
compensação ELIMINAM os fatores em x, resultando na soma/subtração de 6
fatores.

(iii) Estes 6 fatores, por sua vez se reduzem como segue:
senc.cosa–sena.cosc => sen(c–a) => –sen(a–c)
senb.cosc–senc.cosb => sen(b–c)
sena.cosb–senb.cosa => sen(a–b), portanto:

(iv) Det{[cos(x+a), sen(x+a), 1], [cos(x+b), sen(x+b), 1], [cos(x+c), sen(x+c), 1]}=
= –sen(a–c) + sen(a–b) + sen(b–c) => idependente de x c.q.d.

ONDE CONTINUO COM A DÚVIDA SE NÃO HAVERIA UMA MANEIRA MAIS SINTÉTICA DE RESOVER A QUESTÃO, AFINAL É UMA ENORMIDADE DE SOMAS E MULTIPLICAÇÕES QUE TIVE QUE FAZER COM CORRESPONDENTE POTENCIAL DE ÊRRO.

Saudações


Colton

+
+
Colton
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Jul 25, 2010 17:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 21 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}