por Colton » Qua Out 13, 2010 12:56
+
+
Olá pessoal
Estou com problemas para resolver duas questões de matrizes:
a) Prove que o determinante da matriz
a^2 (a+2)^2 (a+4)^2
(a+2)^2 (a+4)^2 (a+6)^2
(a+4)^2 (a+6)^2 (a+8)^2
é igual a -2^9.
este eu resolvi, porém desenvolvendo os produtos e potências, o que foi muito trabalhoso...será que há uma maneira mais simples utilizando as propiedades?
b) Mostre que o determinante da matriz:
cos(x+a) sen(x+a) 1
cos(x+b) sen(x+b) 1
cos(x+c) sen(x+c) 1
é independente de x.
este eu não consegui resolver. Na tentativa de desenvolver o determinante, acabo chegando a uma “salada” de senos e cossenos onde não encontro uma saída...seja diretamente, seja tentando o teorema de Cauchy (para cair numa equação)!
Espero que haja alguém aí para me dar uma orientação.
Colton
+
+
-
Colton
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Dom Jul 25, 2010 17:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: formado
por Colton » Qua Out 20, 2010 10:02
+
+
Olá todos!
Não tendo recebido nenhum comentário à minha questão e tendo resolvido no ínterim a questão colocada e à falta de uma melhor orientação EU MESMO respondo:
301. Mostre que o determinante da matriz
{[cos(x+a), sen(x+a), 1], [cos(x+b), sen(x+b), 1], [cos(x+c), sen(x+c), 1]}
é independente de x.
(i) Aplicando primeiro a troca de filas paralelas detM’ = – detM
– {[1, cos(x+a), sen(x+a)], [1, cos(x+b), sen(x+b)], [1, cos(x+c), sen(x+c)]}
e em seguida a regra de Chió, o determinante se calcula com a “inocente” diferença de produtos:
– { [(cos(x+b) – cos(x+a)) . (sen(x+c) – sen(x+a))] –
– [(cos(x+c) – cos(x+a)) . (sen(x+b) – sen(x+a)]}
(ii) Desenvolvendo esta diferença de produtos obtemos 24 produtos individuais,
sendo 12 do tipo: +senx.cosx.cosa.cosc
–senx.cosx.cosa.cosb
–senx.cosx.sena.cosc, etc
que convenientemente agrupados dois a dois se ANULAM
e 12 produtos do tipo: sen^2x.sena.cosb
+cos^2x.sena.cosb
– sen^2x.sena.cosc, etc
que convenientemente agrupados dois a dois NÃO se anulam, mas em
compensação ELIMINAM os fatores em x, resultando na soma/subtração de 6
fatores.
(iii) Estes 6 fatores, por sua vez se reduzem como segue:
senc.cosa–sena.cosc => sen(c–a) => –sen(a–c)
senb.cosc–senc.cosb => sen(b–c)
sena.cosb–senb.cosa => sen(a–b), portanto:
(iv) Det{[cos(x+a), sen(x+a), 1], [cos(x+b), sen(x+b), 1], [cos(x+c), sen(x+c), 1]}=
= –sen(a–c) + sen(a–b) + sen(b–c) => idependente de x c.q.d.
ONDE CONTINUO COM A DÚVIDA SE NÃO HAVERIA UMA MANEIRA MAIS SINTÉTICA DE RESOVER A QUESTÃO, AFINAL É UMA ENORMIDADE DE SOMAS E MULTIPLICAÇÕES QUE TIVE QUE FAZER COM CORRESPONDENTE POTENCIAL DE ÊRRO.
Saudações
Colton
+
+
-
Colton
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Dom Jul 25, 2010 17:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: formado
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [MATRIZ] Como acho o determinante dessa matriz
por LAZAROTTI » Qui Mai 03, 2012 00:38
- 4 Respostas
- 6745 Exibições
- Última mensagem por Russman

Qui Mai 03, 2012 01:56
Matrizes e Determinantes
-
- matriz e determinante
por arianos » Qui Mai 10, 2012 14:56
- 6 Respostas
- 6902 Exibições
- Última mensagem por DanielFerreira

Sáb Mai 19, 2012 10:15
Matrizes e Determinantes
-
- [Determinante de matriz]
por spektroos » Qui Nov 08, 2012 19:02
- 4 Respostas
- 5739 Exibições
- Última mensagem por spektroos

Qui Nov 08, 2012 19:35
Matrizes e Determinantes
-
- Determinante de uma matriz!!!!
por Razoli » Sáb Abr 06, 2013 15:52
- 3 Respostas
- 5365 Exibições
- Última mensagem por e8group

Sáb Abr 06, 2013 19:40
Matrizes e Determinantes
-
- Determinante da matriz!
por Razoli » Seg Abr 08, 2013 00:10
- 1 Respostas
- 3067 Exibições
- Última mensagem por Razoli

Seg Abr 08, 2013 00:11
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.