• Anúncio Global
    Respostas
    Exibições
    Última mensagem

multiplicação de matrizes resultado não fecha

multiplicação de matrizes resultado não fecha

Mensagempor gutorocher » Ter Jul 27, 2010 18:40

Questão 20.

três empresas X, Y e Z estão competindo, usando uma campanha de marketing. Como resultado desta campanha, houve a seguinte mudança de clientes:

- 7% dos clientes de X trocaram para Y
-> 5% dos clientes de X trocaram para Z
-> 14% dos clientes de Y trocaram para X
-> 8% dos clientes de Y trocam para Z
-> 3% dos clientes de Z trocaram para X
-> 5% dos clientes de Z trocaram para Y

Se no início da campanha a distribuição de clientes era

-> 39% para x
-> 26% para Y
-> 35% para Z

Que operação matricial pode ser usada para representar o cálculo da distribuição de clientes após o fim da campanha ?

A.\left(
  \begin{array}{c}
    0,39 \\
    0,26 \\
    0,35 \\
  \end{array}
\right)
X
\left(
  \begin{array}{ccc}
    0,12 & 0,14 & 0,03 \\
    0,07 & 0,22 & 0,05 \\
    0,05 & 0,08 & 0,08 \\
  \end{array}
\right)

B.\left(
  \begin{array}{ccc}
    0,12  & 0,14 & 0,03 \\
    0,07  & 0,22 & 0,05 \\
    0,05  & 0,08 & 0,08 \\
  \end{array}
\right)X
\left(
  \begin{array}{c}
    0,39 \\
    0,26 \\
    0,35 \\
  \end{array}
\right)

C.\left(
  \begin{array}{c}
    0,39 \\
    0,26 \\
    0,35 \\
  \end{array}
\right)
X
\left(
  \begin{array}{ccc}
    0,88 & 0,14 & 0,03 \\
    0,07 & 0,78 & 0,05 \\
    0,05 & 0,08 & 0,92 \\
  \end{array}
\right)

D.\left(
  \begin{array}{ccc}
    0,88  & 0,14 & 0,03 \\
    0,07  & 0,78 & 0,05 \\
    0,05  & 0,08 & 0,92 \\
  \end{array}
\right)X
\left(
  \begin{array}{c}
    0,39 \\
    0,26 \\
    0,35 \\
  \end{array}
\right)

a alternativa C e A pode-se eliminar de imediato já que não podem multiplicar matriz [3X1][3X3] estão não são permitem ser multiplicadas, restando as alternativas B e D

cheguei nos valores

x= 44%
Y = 16%
Z = 40%

fiz a multiplicação da matriz e o resultado não coincidiu

poderia verificar o que estou errando

fazendo a D que pelo gabarito é a correta não fecho como mostro abaixo

\left(
  \begin{array}{ccc}
    0,88 & 0,14 & 0,03 \\
    0,07 & 0,78 & 0,05 \\
    0,05 & 0,08 & 0,92 \\
  \end{array}
\right)X
\left(
  \begin{array}{c}
    0,39 \\
    0,26 \\
    0,35 \\
  \end{array}
\right)
=
\left(
  \begin{array}{c}
    0,39 \\
    0,24 \\
    0,36 \\
  \end{array}
\right)

desde já agradeço a todos
Avatar do usuário
gutorocher
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Qua Jul 21, 2010 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: CCP
Andamento: formado

Re: multiplicação de matrizes resultado não fecha

Mensagempor gutorocher » Sáb Jul 31, 2010 15:06

boa tarde pessoal preciso muito da ajuda de vocês pra compreender este exercício

aguardo uma ajuda
Avatar do usuário
gutorocher
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Qua Jul 21, 2010 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: CCP
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59