• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Propriedades dos determinates

Propriedades dos determinates

Mensagempor panicox » Sex Set 14, 2018 02:31

como fasso para calcula esta matriz 4x4
Anexos
15368993185801475561949.jpg
como fasso pois não entendi e nada ajuda por favor so quero ajuda para aprende a faze não as respostas
panicox
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Set 14, 2018 02:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Propriedades dos determinates

Mensagempor Gebe » Sex Set 14, 2018 11:15

Sendo cada elemento da matriz dado por a_{ij} onde "i" representa a linha desse elemento e "j" sua coluna, podemos calcular o det como segue:

1º: Escolha uma linha ou coluna da matriz. Dê preferencia por uma que tenha mais 0's, pois irá facilitar os calculos.
2º: Calcular os cofatores dos elementos da linha/coluna selecionada.

O cofator de um elemento é dado por: A_{ij} = (-1)^{i+j} * D_{ij}
D_{ij} é o determinante da matriz inicial após eliminarmos tanto a coluna quanto a linha das quais o elemento a_{ij} pertence.

3º: Tendo os cofatores de cada um dos elementos da linha/coluna selecionada poderemos calcular o det. O determinante é dado somando cada cofator multiplicado por seu respectivo elemento.

Parece complicado, mas pelo exemplo fica bem facil:

a) Vamos escolher a coluna 2.
Vamos ter que calcular os cofatores dos elementos: a_{12} = 2, a_{22} = 6, a_{32} = -5, a_{42} = -3

-> A_{12}:
1.png


A_{12} = (-1)^{1+2} * (151) = -151

-> A_{22}:
2.png


A_{22} = (-1)^{2+2} * (187) = 187

-> A_{32}:
3.png


A_{32} = (-1)^{3+2} * (160) = -160

-> A_{42}:
4.png


A_{42} = (-1)^{4+2} * (140) = 140

Agora podemos calcular o determiannte:
Det = a_{12}*A_{12} + a_{22}*A_{22} + a_{32}*A_{32} + a_{42}*A_{42}

Det = 2*(-151) + 6*187 + (-5)*(-160) + (-3)*140

Det = 1200

As outras seguem da mesma forma.
Espero ter ajudado, qualquer duvida deixe msg.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 156
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Propriedades dos determinates

Mensagempor panicox » Sex Set 14, 2018 13:08

por que o A22 da 187 meu deu 177 ja fiz varias vez não sei si eu errei na regra de sarrus, vlw ajudou muito mermo
panicox
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Set 14, 2018 02:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Propriedades dos determinates

Mensagempor Gebe » Sex Set 14, 2018 13:46

D22 = (7*5*11 + 2*4*-4 + 2*-3*8) - (-4*5*2 + 8*4*7 + 11*-3*2)

D22 = (385 - 32 - 48) - (-40 + 224 -66)

D22 = (305) - (118)

D22 = 187
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 156
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}