• Anúncio Global
    Respostas
    Exibições
    Última mensagem

determinante

determinante

Mensagempor ezidia51 » Dom Mar 25, 2018 21:06

Alguém pode conferir se está certo?

Determine os valores de \mu\in\Repara os quais det (A-\muI)=0 sendo A=\begin{vmatrix}
 2 & 1 \\ 
  0 & 1 
\end{vmatrix}

e I=\begin{vmatrix}
   1& 0  \\ 
   0 & 1 
\end{vmatrix}
a matriz identidade



det=2-1-0 =1
ezidia51
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: determinante

Mensagempor Gebe » Dom Mar 25, 2018 21:57

A resposta certa é \mu=2\:ou\:\mu=1. Pode assumir os dois valores para que det(A-\mu I)=0 seja atendido. Abaixo segue a resolução.

det\left(A- \mu I \right)=0

det\left(
\begin{pmatrix}
   2 & 1  \\ 
   0 & 1 
\end{pmatrix}
- \mu * 
\begin{pmatrix}
   1 & 0  \\ 
   0 & 1 
\end{pmatrix}
 \right)=0

det\left(
\begin{pmatrix}
   2 & 1  \\ 
   0 & 1 
\end{pmatrix}
- 
\begin{pmatrix}
   \mu & 0  \\ 
   0 & \mu 
\end{pmatrix}
 \right)=0

det
\begin{pmatrix}
   2-\mu & 1-0  \\ 
   0-0 & 1-\mu 
\end{pmatrix}
=0

(2-\mu)*(1-\mu) - (1-0)*(0)
=0

2*1 - 2*\mu -\mu*1 + \mu^2
=0

\mu^2 -3\mu+2
=0

Resolvendo a equação de 2° grau chegamos as duas respostas \mu=2\:\,\:e\:\,\:\mu=1. Nao coloquei a resolução da eq. de 2° grau, mas se precisar é so mandar msg.
Espero ter ajudado, bons estudos.
Gebe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 85
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: determinante

Mensagempor ezidia51 » Dom Mar 25, 2018 22:06

Muito muito obrigado mesmo!!!Você poderia me enviar a resolução com final com a fórmula para eu saber como vc chegou ao resultado das raízes?Desde já lhe agradeço muito!!
ezidia51
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: determinante

Mensagempor Gebe » Dom Mar 25, 2018 22:21

Aplicando a formula de Bhaskara na eq \mu^2-3\mu+2=0 temos:

\mu=\frac{-b\pm\sqrt[2]{\Delta}}{2a}

\Delta=(-3)^2-4*1*2

\Delta=9-8

\Delta=1

\mu=\frac{-(-3)\pm\sqrt[2]{1}}{2*1}

\mu=\frac{3\pm1}{2}

{\mu}^{,}=\frac{3+1}{2}=2\\

{\mu}^{,,}=\frac{3-1}{2}=1\\

Qualquer duvida pode mandar msg. Bons estudos.
Gebe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 85
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: determinante

Mensagempor ezidia51 » Dom Mar 25, 2018 23:47

Um super muito obrigado!!!Vc me ajudou muito!!! :y: :y: :y: :y: :y: :y:
ezidia51
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59