• Anúncio Global
    Respostas
    Exibições
    Última mensagem

matriz inversa e determinante

matriz inversa e determinante

Mensagempor ezidia51 » Sex Mar 23, 2018 17:10

Gostaria só de saber se este cálculo está correto.Obrigado
Determine a matriz inversa de A=\begin{pmatrix}
   2 & 1  \\ 
   4 & 0
\end{pmatrix}=[tex]
\begin{pmatrix}
   a & b  \\ 
   c & d 
\end{pmatrix}{}^{-1} =\begin{pmatrix}
   2 & 1 \\ 
   4 & 0
\end{pmatrix}{}^{-1}=[Unparseable or potentially dangerous latex formula. Error 6 ]
-4 & 2
\end{pmatrix}
[/tex]


Determine os valores de \mu\in\Repara os quais det(A-\mu(A-\mu\I)=0 sendo A=[tex] \begin{pmatrix}
   2 & 1 \\ 
   0 & 1 
\end{pmatrix} e
I=\begin{pmatrix}
   1 & 0 \\ 
   0 & 1 
\end{pmatrix}\begin{pmatrix}
   1 & 0 \\ 
   0 & 1 
\end{pmatrix} a matriz identidade.
Minha resolução:
\begin{pmatrix}
   2 & 1 \\ 
   0 & 1 
\end{pmatrix}-\begin{pmatrix}
  1 & 0 \\ 
   0 & 1 
\end{pmatrix}\begin{pmatrix}
  1 & 0 \\ 
   0 & 1 
\end{pmatrix}=\begin{pmatrix}
  1 & 0 \\ 
   0 & 1 
\end{pmatrix}\begin{pmatrix}
   1 & 1 \\ 
   0 & 0 
\end{pmatrix}
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.