por Russman » Dom Mar 01, 2015 22:44
Basta calcular o determinante e iguala-lo a zero.

Daí, fatorando, temos

O produto de dois números é zero se, e somente se, um deles for zero. Daí,
OU 
.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Demonstração de a²+b²+ab é maior ou igual a 0
por JessicaHayanne » Qui Mar 21, 2013 17:41
- 1 Respostas
- 3091 Exibições
- Última mensagem por e8group

Qui Mar 21, 2013 19:17
Teoria dos Números
-
- Altura do trapézio igual ao diâmetro da circunferencia ?
por gustavoluiss » Ter Dez 14, 2010 07:12
- 1 Respostas
- 2144 Exibições
- Última mensagem por MarceloFantini

Ter Dez 14, 2010 13:49
Geometria Analítica
-
- Álgebra Elementar - Verificar se equação é igual
por johnlaw » Dom Fev 27, 2011 14:14
- 5 Respostas
- 3169 Exibições
- Última mensagem por Renato_RJ

Seg Fev 28, 2011 15:12
Álgebra Elementar
-
- [Indução] Para todo n maior igual que 2
por +danile10 » Dom Fev 17, 2013 13:07
- 2 Respostas
- 1873 Exibições
- Última mensagem por e8group

Dom Fev 17, 2013 14:40
Lógica
-
- Demonstrar que a função f é igual a uma certa série
por fff » Seg Jan 05, 2015 17:15
- 4 Respostas
- 4416 Exibições
- Última mensagem por fff

Qua Jan 07, 2015 18:14
Sequências
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.