• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz e diagonal principal

Matriz e diagonal principal

Mensagempor Drudi_Fer » Dom Jan 19, 2014 16:33

Tentei resolver este exercício mas o gabarito não esta de acordo com minha resposta gostaria de uma resolução para detectar possíveis erros meus ou do gabarito

1.Sejam as matrizes A = (aij)3x3, tal que aij = i – 3j, B = (bij)3x3,
tal que bij = 2j + i2, e C = (cij)3x3, tal que cij = ix j. Então a
soma dos elementos da diagonal principal da matriz Q,
onde Q = A + B – C, é
Drudi_Fer
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Jan 19, 2014 16:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Educação Física
Andamento: formado

Re: Matriz e diagonal principal

Mensagempor e8group » Seg Fev 03, 2014 20:30

Uma matriz Q (m\times n)que se exprimir como combinação linear das matrizes A_1 , A_2 , \hdots , A_p de ordem m\times n ,

Q := \sum_{i=1}^p \alpha_i A_i =  \alpha_1 A_1 + \hdots + \alpha_p A_p .

O elemento [Q]_{ij} (situado no encontro da i-ésima linha com a j-ésima coluna de Q) é escrito como

\alpha_1 [A_1]_{ij} + \alpha_2  [A_2]_{ij} + \hdots  + \alpha_p  [A_p]_{ij} ([A_k]_{ij} termos gerais da matriz A_k ,  k=1 ,\hdots , p) .

Assim , quando Q = A + B - C , tem-se

[Q]_{ij} = [A]_{ij} + [B]_{ij} - [C]_{ij} . Substituindo-se

[A]_{ij} , [B]_{ij} e [C]_{ij} respectivamente pelas expressões correspondentes dadas terá uma expressão geral que determinar [Q]_{ij} , fazendo i=j = 1 ,2,3 é possível determinar o que se pede no enunciado .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}