• Anúncio Global
    Respostas
    Exibições
    Última mensagem

calcular matriz

calcular matriz

Mensagempor rodrigonapoleao » Qua Jan 02, 2013 20:19

como calculo o valor de b

\begin{pmatrix}
   2 & 0 & \frac{1}{6}(-8+2b)  \\ 
   0 & 1 & \frac{2}{6}(-3b+12) \\
   0 & 0 & \frac{1}{6}(-10+4b)
\end{pmatrix} = \begin{pmatrix}
   1 & 0 & 0  \\ 
   0 & 1 & 0   \\
   0 & 0 & 1
\end{pmatrix}
rodrigonapoleao
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Nov 19, 2012 14:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: calcular matriz

Mensagempor e8group » Qua Jan 02, 2013 20:51

Usa as propriedades dos determinantes ,(note que é bem mais rápido ) .

Dada matriz A = (a_{ij})_{n\times n} diagonal .Segue que ,

det(A) = \prod_{k=1}^n a_{kk} = a_{11}\cdot a_{22} \cdot  (\hdots) \cdot a_n .

Aplicando-o a este exercício ,segue então que .

det \begin{pmatrix}
   2 & 0 & \frac{1}{6}(-8+2b)  \\ 
   0 & 1 & \frac{2}{6}(-3b+12) \\
   0 & 0 & \frac{1}{6}(-10+4b)
\end{pmatrix} = det \begin{pmatrix}
   1&0&0   \\ 
   0 & 1 &0 \\
   0 &0&1 
\end{pmatrix}


2 \cdot 1 \cdot \frac{(-10+4b)}{6} = 1 \cdot 1 \cdot 1 = 1
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.