• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Não consigo achar o determinante

Não consigo achar o determinante

Mensagempor IsabelRangell » Qui Abr 08, 2010 17:08

A questão é a seguinte:

As matrizes A e B , quadradas de ordem 3, são tais que B = 2.detAt , onde detAt é a matriz transposta de A. Se o determinante de B é igual a 40 , então o determinante da matriz inversa de A é igual a:
(A)1/5 <--- GABARITO DIZ QUE É A CORRETA
(B)5
(C)1/40
(D)1/20
(E)20

-----------------------------------------------------------------------
Não entendi como resolver essa. Reli a matéria e tentei aplicar as propriedades. Fiz assim:

B = 2.{A}^{t}
det{A}^{t} = detA
detB = 40  \Rightarrow  detB = 2.detA  \Rightarrow  2.detA = 40  \Rightarrow  detA = \frac{40}{2} = 20
{detA}^{-1} = \frac{1}{detA} = \frac{1}{20}

Logo, eu teria marcado a letra D e errado categoricamente.
Por que não apliquei corretamente as propriedades? Onde está meu erro? Como assim, 1/5??
Avatar do usuário
IsabelRangell
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Abr 05, 2010 18:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Letras (Português/Alemão)
Andamento: cursando

Re: Não consigo achar o determinante

Mensagempor MarceloFantini » Qui Abr 08, 2010 19:55

Por acaso não seria B = det(2A^t)? Como são de ordem 3, isso se transformaria em B = 8det(A), justificando a resposta.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}