Conferindo ...
Considerando :
e
Façamos primeiro o produto

.
![BC= \begin{pmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
\frac{1}{\sqrt[]{2}} & 0 & \frac{1}{\sqrt[]{2}} \\
0 & 1 & 0 \\
-\frac{1}{\sqrt[]{2}} & 0 & \frac{1}{\sqrt[]{2}} \\
\end{pmatrix} = \begin{pmatrix}
\0 & -1 & 0\\
\frac{1}{\sqrt{2}} &0 & \frac{1}{\sqrt{2}}\\
-\frac{1}{\sqrt{2}}& 0 & \frac{1}{\sqrt{2}}
\end{pmatrix} BC= \begin{pmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
\frac{1}{\sqrt[]{2}} & 0 & \frac{1}{\sqrt[]{2}} \\
0 & 1 & 0 \\
-\frac{1}{\sqrt[]{2}} & 0 & \frac{1}{\sqrt[]{2}} \\
\end{pmatrix} = \begin{pmatrix}
\0 & -1 & 0\\
\frac{1}{\sqrt{2}} &0 & \frac{1}{\sqrt{2}}\\
-\frac{1}{\sqrt{2}}& 0 & \frac{1}{\sqrt{2}}
\end{pmatrix}](/latexrender/pictures/7052b39282a36573c053919de88b09b7.png)
Assim ,
Utilizando o site wolframalpha p/ verificar a resposta ,digite lá :
{{2^(-1/2),0 ,-2^(-1/2)},{0 , 1 ,0},{2^(-1/2),0 ,2^(-1/2)}} * {{ 0 , -1 , 0},{1,0,0},{0,0,1}} * {{2^(-1/2) , 0,2^(-1/2)},{0,1,0},{-2^(-1/2) , 0,2^(-1/2) }} .
Veja o resultado :
http://www.wolframalpha.com/input/?i=%7 ... %29+%7D%7D