• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Matriz]Conjunto Solucao do sistema

[Matriz]Conjunto Solucao do sistema

Mensagempor leonardoxx » Sex Nov 16, 2012 12:38

Para a matriz A =\begin{pmatrix}
   1 & 1 & 1 & 1  \\ 
   1 & 3 & -2 & a  \\
   2 & 2a-2 & -a-2 & 3a-1 \\
   3 & a+2 & -3 & 2a+1
\end{pmatrix},determine o conjunto solucao do sistema AX=B, onde B=\begin{pmatrix}
   4 & 3 & 1 & 6  
\end{pmatrix}T, para todos os valores de a.


Alguem ai sabe como resolver?
Editado pela última vez por leonardoxx em Sex Nov 16, 2012 13:47, em um total de 1 vez.
leonardoxx
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Nov 16, 2012 12:01
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Matriz]Conjunto Solucao do sistema

Mensagempor MarceloFantini » Sex Nov 16, 2012 13:37

Leonardo, use figuras apenas se estritamente necessário. Utilize LaTeX para redigir suas equações, no caso, matrizes. Seu tópico não deverá ser respondido até estar de acordo com as regras.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Matriz]Conjunto Solucao do sistema

Mensagempor leonardoxx » Dom Nov 18, 2012 16:35

entao galera, alguma ideia de como resolver isso? estou tentando ate agora e nao consegui
To tentando pelo metodo da eliminaçao gaussiana
leonardoxx
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Nov 16, 2012 12:01
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Matriz]Conjunto Solucao do sistema

Mensagempor e8group » Dom Nov 18, 2012 17:21

Boa tarde , dependendo da operações elementares que vc aplicar a este exercício fica mais fácil solucionar condições para a . Eu fiz este exercício na semana passada .

Veja a matriz aumentada abaixo .

\begin{bmatrix}1 & 1 & 1 &   1   &  4   \\  
1 & 3 & -2 &   a   & 3   \\ 
2 & 2a-3 & -a-2 &   3a-1   &  1   \\ 
3 & a+2 & -3 &   2a+1   &  6   \\ 


 \end{bmatrix}

Agora aplique as operações elementares na seguinte ordem ,


- L_1  +   L_2   \rightarrow  L_2   ;   - 2L_1 + L_3 \rightarrow L_3 ;  - 3L_1 + L_4 \rightarrow L_4    ;    - 2 l_2 + L_4 \rightarrow L_4  ; - 3L_2 + L_3 \rightarrow L_3   ;   - 2L_4 +  L_3  \rightarrow L_3  ;   l_2  \leftrightarrow l_4

Não concluir o proposto pelo algoritmo de Gauss-Jordan , que obter uma matriz identidade no final que dá solução imediata . Mas diante das operações acima , fica fácil estudar tais condições imposta sobre a para que o sistema tenha solução e determinar as possíveis soluções . Se não conseguir post aí .

OBS. Alguém sabe o código que utilizo p/ matrizes aumentadas como consta nos livros .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59