• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz Idempotentes

Matriz Idempotentes

Mensagempor cramos_err » Sex Ago 31, 2012 19:49

uma matriz quadrada é chamada de idempotentes se a²=a. Verifique que a matriz 1/3 |2 -1 -1|
|-1 2 -1|
|-1 -1 2|

é idempotente.
cramos_err
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Ago 31, 2012 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Matriz Idempotentes

Mensagempor LuizAquino » Sex Ago 31, 2012 19:58

cramos_err escreveu:uma matriz quadrada é chamada de idempotentes se a²=a. Verifique que a matriz 1/3 |2 -1 -1|
|-1 2 -1|
|-1 -1 2|

é idempotente.


Qual foi exatamente a sua dúvida? Basta calcular o produto A*A e conferir se isto é igual a própria matriz A.

Observação

Por favor, procure usar o LaTeX para digitar as notações de forma adequada.

Por exemplo, para digitar a matriz desejada basta usar o código:

Código: Selecionar todos
[tex]
\frac{1}{3}\begin{bmatrix}
2 & - 1 & -1 \\
-1 & 2 & -1\\
-1 & -1 & 2
\end{bmatrix}
[/tex]


O resultado desse código será:

\frac{1}{3}\begin{bmatrix}
2 & - 1 & -1 \\
-1 & 2 & -1\\
-1 & -1 & 2
\end{bmatrix}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Matriz Idempotentes

Mensagempor cramos_err » Sex Ago 31, 2012 20:08

LuizAquino escreveu:
cramos_err escreveu:uma matriz quadrada é chamada de idempotentes se a²=a. Verifique que a matriz 1/3 |2 -1 -1|
|-1 2 -1|
|-1 -1 2|

é idempotente.


Qual foi exatamente a sua dúvida? Basta calcular o produto A*A e conferir se isto é igual a própria matriz A.

Observação

Por favor, procure usar o LaTeX para digitar as notações de forma adequada.

Por exemplo, para digitar a matriz desejada basta usar o código:

Código: Selecionar todos
[tex]
\frac{1}{3}\begin{bmatrix}
2 & - 1 & -1 \\
-1 & 2 & -1\\
-1 & -1 & 2
\end{bmatrix}
[/tex]


O resultado desse código será:

\frac{1}{3}\begin{bmatrix}
2 & - 1 & -1 \\
-1 & 2 & -1\\
-1 & -1 & 2
\end{bmatrix}



Me descupe, pois sou novo no forum.

Mais a minha dúvida é pq 1/3, tem como vc fazer esse execício, para eu ver como fica, é apenas um exemplo.

Agradeço desde já.
cramos_err
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Ago 31, 2012 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Matriz Idempotentes

Mensagempor LuizAquino » Sex Ago 31, 2012 20:46

cramos_err escreveu:Mais a minha dúvida é pq 1/3, tem como vc fazer esse execício, para eu ver como fica, é apenas um exemplo.


Ao invés de "lhe dar o peixe", eu vou lhe "ensinar a pescar". Eu mostrarei o caminho e você tenta seguir. Se você não conseguir terminar, então poste aqui até onde conseguiu avançar.

Note que esse 1/3 é apenas um escalar multiplicando toda a matriz. Lembre-se que multiplicar um escalar por uma matriz é apenas realizar a seguinte operação:

\frac{1}{3}\begin{bmatrix} 2 & - 1 & -1 \\ -1 & 2 & -1\\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & - \frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}

Agora bastaria calcular o produto:

\begin{bmatrix} \frac{2}{3} & - \frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}\begin{bmatrix} \frac{2}{3} & - \frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}

Se o resultado desse produto for igual a matriz inicial, então a matriz é idempotente.

Mas ao invés de fazer por esse caminho, o mais interessante seria efetuar a seguinte arrumação:

\left(\frac{1}{3}\begin{bmatrix} 2 & - 1 & -1 \\ -1 & 2 & -1\\ -1 & -1 & 2 \end{bmatrix}\right)\cdot \left(\frac{1}{3}\begin{bmatrix} 2 & - 1 & -1 \\ -1 & 2 & -1\\ -1 & -1 & 2 \end{bmatrix}\right)=

= \left(\frac{1}{3}\cdot \frac{1}{3}\right)\begin{bmatrix} 2 & - 1 & -1 \\ -1 & 2 & -1\\ -1 & -1 & 2 \end{bmatrix}\right)\begin{bmatrix} 2 & - 1 & -1 \\ -1 & 2 & -1\\ -1 & -1 & 2 \end{bmatrix}

= \frac{1}{9} \begin{bmatrix} 2 & - 1 & -1 \\ -1 & 2 & -1\\ -1 & -1 & 2 \end{bmatrix}\right)\begin{bmatrix} 2 & - 1 & -1 \\ -1 & 2 & -1\\ -1 & -1 & 2 \end{bmatrix}

Agora basta calcular o produto entre as matrizes e comparar com a inicial. Note que esse produto é bem mais simples do que aquele entre as matrizes anteriores.

Tente continuar a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: