• Anúncio Global
    Respostas
    Exibições
    Última mensagem

AJUDA COM MATRIZES

AJUDA COM MATRIZES

Mensagempor feeh1208 » Qui Dez 08, 2011 13:10

fiquei afastado do colegio porque cai de moto e me passaram esse trabalho para fazer, mais eu não sei nem como começar. :/

Ajuda em Matrizes (não consigo resolver esses problemas).?
Para todas as questões a seguir, considere as matrizes.
(1 1) <-A (0 6) <- B (-2 -3) <- C
(5 7) <-A (9 3) <- B (5 3) <- C

1. Determine 2A.2B
2. Determine 2C^t + 2b
3. Determine B^t - 2c
4. Determine A-¹
feeh1208
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Dez 08, 2011 13:06
Formação Escolar: ENSINO MÉDIO
Área/Curso: matemática
Andamento: cursando

Re: AJUDA COM MATRIZES

Mensagempor TheoFerraz » Qui Dez 08, 2011 14:52

Bom, eu aaacho que o que voce quis dizer foi

A = 
\begin{pmatrix}
   1 & 1  \\ 
   5 & 7 
\end{pmatrix}

B = 
\begin{pmatrix}
  9 & 6  \\ 
   0 & 3 
\end{pmatrix}

C = 
\begin{pmatrix}
   -2 & -3  \\ 
   5 & 3 
\end{pmatrix}

Basicamente, o que se deve fazer é...

se voce precisa somar (ou subtrair) duas matrizes. voce soma (ou subtração) termo por termo, respectivamente.

Por exemplo

A + B = 
\begin{pmatrix}
   1+9 & 1+6 \\ 
   5+0 & 7+3 
\end{pmatrix}

Se voce quiser multiplicar por um escalar... tipo 2, voce multiplica todos os membros por 2. (o mesmo vale para divisão por escalar)

Agora o mais chatinho. Se voce precisa Multiplicar duas matrizes, voce vai ter que:

Somar a multiplicação respectiva de uma linha da matriz da esquerda, com uma linha da matriz da direita. o melhor jeito de aprender isso é com exemplos.

Usando a letra a) como exemplo.

calcule antes de qualquer coisa 2A e 2B

2A = 
\begin{pmatrix}
   2 & 2 \\ 
   10 & 14 
\end{pmatrix}
 \;\;\; ; \;\;\;
2B = 
\begin{pmatrix}
   0 & 12  \\ 
   18 & 9 
\end{pmatrix}

agora multipliquemos...

\begin{pmatrix}
   2 & 2 \\ 
   10 & 14 
\end{pmatrix}
\times 
\begin{pmatrix}
   0 & 12  \\ 
   18 & 9 
\end{pmatrix}

Voce deve fazer o seguinte.

pegue a PRIMEIRA linha da matriz da esquerda, e a PRIMEIRA coluna da matriz da direita.

\begin{pmatrix}
   2 & 2 \\ 
   * & * 
\end{pmatrix}
\times 
\begin{pmatrix}
   0 & *  \\ 
   18 & * 
\end{pmatrix}

Multiplique o termo A11 com o B11, e some com A21 vezes o termo B12.

assim:

2 \times 0 + 2 \times 18 = 38

Esse numero ficará no lugar de coordenadas 1,1 da resposta, pois voce pegou a PRIMEIRA linha e a PRIMEIRA coluna... Resposta = 
\begin{pmatrix}
   38 & *  \\ 
   * & * 
\end{pmatrix}


Depois vamos pegar a PRIMEIRA linha e a SEGUNDA coluna

\begin{pmatrix}
   2 & 2 \\ 
   * & * 
\end{pmatrix}
\times 
\begin{pmatrix}
   * & 12  \\ 
   * & 9 
\end{pmatrix}

A11 vezes B21, mais, A12 vezes B22... {Um bom jeito de fazer essa multiplicação de forma automática é não pensar nesses numeros! coloque o dedo no começo de uma linha e outro dedo no começo de uma coluna... Vá andando os dedos e multiplicando termo à termo! Uma dica... eu GARANTO que se voce fizer 5 multiplicações de matriz por 3 dias seguidos (isso da uns 10 minutos) voce vai fazer essa multiplicação automática... eu digo isso pq confunde, essa multiplicação é chata!}

vai resultar em 36 essa ultima 2 \times 12 + 2 \times 9 ... e voce vai posicioná-la no termo de coordenadas 1,2 da resposta, por que usou a PRIMEIRA linha com a SEGUNDA coluna. resultando

Resposta = 
\begin{pmatrix}
   38 & 26  \\ 
   * & * 
\end{pmatrix}


depois voce precisa fazer da SEGUNDA linha com a PRIMEiRA coluna

\begin{pmatrix}
   * & * \\ 
   10 & 14 
\end{pmatrix}
\times 
\begin{pmatrix}
   0 & *  \\ 
   18 & * 
\end{pmatrix}

10 \times 0 + 14 \times 18

e vai resultar 252

Resposta = 
\begin{pmatrix}
   38 & 26  \\ 
   252 & * 
\end{pmatrix}


tente fazer a ultima sosinho.


--> quando voce precisar calcular uma transposta... ou {A}^{t}

só o que se deve fazer é inverter as linhas pelas colunas.

--> Quando voce precisar de uma matriz inversa, ou {A}^{-1} Voce deve multiplicar a matriz A por uma matriz desconhecida... ou seja,
\begin{pmatrix}
   a & b  \\ 
   c & d 
\end{pmatrix}

e tomar como resultado a matriz identidade I =
\begin{pmatrix}
   1 & 0  \\ 
   0 & 1 
\end{pmatrix}

isso vai resultar num sistema facil de ser resolvido.
.

{{ Eu realmente espero que tenha ajudado! demorei quase uma hora pra responder esse topico! AUSHASUHAHUSAHU }}

bom estudo

.
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}