• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Determinantes] Inversão de Matrizes

[Determinantes] Inversão de Matrizes

Mensagempor vanessafey » Sex Set 02, 2011 22:52

Baixei uma apostila do cursinho da UFSC e não consigo resolver esta inversão de matrizes. O gabarito apresenta a resposta(-48) e eu sempre encontro 0.

determinantes.png
determinantes.png (4.89 KiB) Exibido 3499 vezes


Comecei da seguinte forma:

2|+M_1_1 |-3|-M_1_2 |+4|+M_1_3 |
Editado pela última vez por vanessafey em Sáb Set 03, 2011 00:21, em um total de 1 vez.
vanessafey
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Jun 24, 2011 13:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Determinantes] Inversão de Matrizes

Mensagempor MarceloFantini » Sáb Set 03, 2011 00:03

Vanessa, não entendo seu desenvolvimento. Pode explicar um pouco mais?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Determinantes] Inversão de Matrizes

Mensagempor vanessafey » Sáb Set 03, 2011 00:12

Desculpe-me postei o anexo errado, lógico que fica incompreensível...

determinantes.png
determinantes.png (4.89 KiB) Exibido 3502 vezes


Tentei resolver por cofator relativo à primeira linha.
vanessafey
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Jun 24, 2011 13:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Determinantes] Inversão de Matrizes

Mensagempor vanessafey » Sáb Set 03, 2011 16:18

Ainda não consegui responder a questão...

Segue o meu raciocínio... usando Cofator em função da primeira linha...

|A|=2aA_1_1+ (-3c) A_1_2+4hA_1_3
|A|=2|+M_1_1 |+ (-3c)|-M_1_2 |+4h|+M_1_3 |
|A|=2(-12+12)+3(8-8)+4(-6+6)=0
vanessafey
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Jun 24, 2011 13:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Determinantes] Inversão de Matrizes

Mensagempor MarceloFantini » Sáb Set 03, 2011 16:27

Não é necessário calcular o determinante. Lembre-se que determinante é uma função que tem a propriedade de que se uma constante multiplica uma linha ou coluna inteira, podemos multiplicar o determinante inteiro por essa constante. Assim, seja A essa matriz. Sabemos \det A = 2. Com a nova matriz A', temos que \det A' = 2 \cdot (-3) \cdot 4 \cdot \det A = -24 \cdot \det A = -48
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Determinantes] Inversão de Matrizes

Mensagempor vanessafey » Sáb Set 03, 2011 16:35

Muito obrigada! Nessas horas eu percebo como consigo complicar algo simples!

Vou continuar os exercícios...
vanessafey
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Jun 24, 2011 13:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}