por JacquesPhilippe » Seg Ago 08, 2011 19:19
Boa noite,
Eu estou a tentar estudar álgebra linear (sozinho, diga-se), mas fiquei preso numa demonstração (sorry não sou um einstein).
Sendo B invertível, (A e B são consideradas quadradas)
AB^-1=B^-1A só se, e somente só se, AB=BA
O interesse é demonstar esta necessidade, mas não consigo demonstrar =/
-
JacquesPhilippe
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Seg Ago 08, 2011 19:12
- Formação Escolar: EJA
- Andamento: cursando
por LuizAquino » Seg Ago 08, 2011 20:57
Eu vou mostrar a ida e você tenta a volta.
Temos

e queremos provar que AB = BA.
Comece multiplicando (a esquerda) ambos os membros de

por B:


Agora, temos que:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por JacquesPhilippe » Qua Ago 10, 2011 20:29
Desculpa a demora, estive uns dias sem acesso à internet.
Muito obrigado pela ajuda.
Fazendo a volta, ficará:

Certo?
-
JacquesPhilippe
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Seg Ago 08, 2011 19:12
- Formação Escolar: EJA
- Andamento: cursando
por LuizAquino » Qui Ago 11, 2011 19:43
JacquesPhilippe escreveu:Fazendo a volta, ficará:

Multiplicando, a esquerda, por

:


O que dá

Certo?
Está correto.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- matrizes invertiveis
por kath » Sex Abr 18, 2014 02:32
- 1 Respostas
- 3213 Exibições
- Última mensagem por e8group

Sex Abr 18, 2014 15:53
Matrizes e Determinantes
-
- Matrizes inversas metodo adição
por watson » Qua Fev 22, 2012 16:33
- 4 Respostas
- 3011 Exibições
- Última mensagem por LuizAquino

Qua Fev 22, 2012 22:44
Geometria Analítica
-
- [Matrizes] produto de matrizes
por vanessafey » Dom Ago 28, 2011 16:54
- 1 Respostas
- 3474 Exibições
- Última mensagem por MarceloFantini

Dom Ago 28, 2011 17:35
Matrizes e Determinantes
-
- [MATRIZES] Demonstração de matrizes
por farinha99 » Sáb Set 03, 2016 11:56
- 0 Respostas
- 5886 Exibições
- Última mensagem por farinha99

Sáb Set 03, 2016 11:56
Matrizes e Determinantes
-
- matrizes
por luix henrique » Seg Out 13, 2008 15:42
- 1 Respostas
- 9571 Exibições
- Última mensagem por Molina

Seg Out 13, 2008 20:13
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.