por samuel_corf » Seg Abr 25, 2011 11:51
Olá, sou um analista de sistemas e me deparei com um problema aqui que na teoria seria simples, mais ta me dando a maior dor de cabeça.
O problema é o seguinte, preciso descobrir se 3 pontos no espaço são colineares, pela referência matemátcia que tenho, deveria jogar esses pontos em uma matriz e calcular o seu determinante, caso o determinante seja zero isso significa que os pontos são colineares.
Porém estou tendo dificuldades com este problema pois, suponhamos que existem 3 pontos onde o eixo z de todos é igual a zero, neste caso a determinante será sempre zero e não necessáriamente os pontos são colineares.
Será que poderiam me ajudar nessa questão?
Desde já agradeço
-
samuel_corf
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Abr 25, 2011 11:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharel em Ciência da Computação
- Andamento: formado
por LuizAquino » Seg Abr 25, 2011 14:26
A sua referência Matemática, como você mesmo percebeu, não está correta. Eu sugiro que você procure por um bom livro de Geometria Analítica.
Sejam A, B e C pontos no espaço. Esses pontos são colineares se e somente se

. Ou seja, se existe um escalar
k tal que

.
Fazendo A=(xa, ya, za), B=(xb, yb, zb) e C=(xc, yc, zc), temos que verificar se existe
k tal que (xb-xa, yb-ya, zb-za) = k(xc-xa, yc-ya, zc-za).
Note que para isso acontecer devemos ter (xb-xa)/(xc-xa) = (yb-ya)/(yc-ya) = (zb-za)/(zc-za).
AtençãoPara não ocorrer divisão por zero, deve-se tomar cuidado com os casos nos quais (xc-xa)=0 ou (yc-ya)=0 ou (zc-za)=0.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por samuel_corf » Seg Abr 25, 2011 14:49
Obrigado Luiz Aquino, faz todo sentido o que você disse. Acho que agora conseguirei resolver meu problema. Vlw
-
samuel_corf
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Abr 25, 2011 11:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharel em Ciência da Computação
- Andamento: formado
por Phisic » Dom Jul 24, 2011 18:08
samuel_corf escreveu:Obrigado Luiz Aquino, faz todo sentido o que você disse. Acho que agora conseguirei resolver meu problema. Vlw
Ae Samuel, to enfrentado o problema em determinar uma formula computacional que retorne os possível pontos de uma reta no espaço, vc poderia me ajudar nisso?
-
Phisic
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qui Jul 21, 2011 12:32
- Localização: Cascavel Pr.
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: formado
por LuizAquino » Dom Jul 24, 2011 20:46
Phisic, vide o tópico:
Reta no espaçoviewtopic.php?f=106&t=5445
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Pontos Não-Colineares
por wilgaroto » Sex Out 28, 2011 09:41
- 1 Respostas
- 4349 Exibições
- Última mensagem por LuizAquino

Sáb Out 29, 2011 11:51
Geometria Analítica
-
- Pontos Colineares
por Claudin » Qui Abr 05, 2012 19:19
- 3 Respostas
- 10480 Exibições
- Última mensagem por Claudin

Qui Abr 05, 2012 22:31
Geometria Analítica
-
- Pontos P,Q e R - Colineares ?
por PeterHiggs » Seg Set 24, 2012 19:10
- 2 Respostas
- 2287 Exibições
- Última mensagem por PeterHiggs

Ter Set 25, 2012 13:18
Geometria Espacial
-
- Pontos colineares
por Milton21 » Qui Out 18, 2012 15:14
- 4 Respostas
- 15639 Exibições
- Última mensagem por e8group

Sex Out 19, 2012 17:48
Geometria Analítica
-
- Dúvida Assíntotas e Pontos de descontinuidade
por Dominique » Sáb Mai 28, 2011 15:15
- 1 Respostas
- 2617 Exibições
- Última mensagem por LuizAquino

Sáb Mai 28, 2011 18:36
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.