• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinante se altera

Determinante se altera

Mensagempor Renan » Qui Jun 23, 2011 16:42

(UESPI) Se o determinante da matriz \begin{vmatrix}
   2 & 1 & 0  \\ 
   k & k & k  \\
   1 & 2 & -2
\end{vmatrix} é igual a 10, então o determinante da matriz \begin{vmatrix}
   2 & 1 & 0  \\ 
   k+4 & k+3 & k-1  \\
   1 & 2 & -2
\end{vmatrix}
é igual a:
(a) 7
(b) 8
(c) 9
(d) 10
(e) 11

Obs: Só entendi a quando determinantes trocam filas ou são multiplicados por um valor, mas não sei quando somados ou subtraídos.
Renan
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jun 23, 2011 16:02
Formação Escolar: ENSINO MÉDIO
Área/Curso: técnico em farmácia
Andamento: formado

Re: Determinante se altera

Mensagempor Molina » Qui Jun 23, 2011 16:47

Boa tarde, Renan.

Faça o primeiro determinante, que você tem o valor. Assim você descobrirá o valor de k. Feito isso, substitua o valor de k no segundo determinante e calcule então o que você quer descobrir.


Bom estudo :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Determinante se altera

Mensagempor Renan » Qui Jun 23, 2011 16:54

ahh sim, achei que envolvesse alguma propriedade referente a determinantes, já que duas linhas são iguais.
Renan
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jun 23, 2011 16:02
Formação Escolar: ENSINO MÉDIO
Área/Curso: técnico em farmácia
Andamento: formado

Re: Determinante se altera

Mensagempor FilipeCaceres » Qui Jun 23, 2011 17:11

Uma outra forma seria,
\begin{vmatrix} 2 & 1 & 0 \\ k+4 & k+3 & k-1 \\ 1 & 2 & -2 \end{vmatrix}=\begin{vmatrix} 2 & 1 & 0 \\ k & k & k \\ 1 & 2 & -2 \end{vmatrix}+\begin{vmatrix} 2 & 1 & 0 \\ 4 & 3 & -1 \\ 1 & 2 & -2 \end{vmatrix}=10-1=\boxed{9}

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Determinante se altera

Mensagempor Renan » Qui Jun 23, 2011 19:10

Sim, deve ser esse o objetivo da questão, já que está na lista das propriedades de determinantes. Obrigado, agora entendi.
Renan
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jun 23, 2011 16:02
Formação Escolar: ENSINO MÉDIO
Área/Curso: técnico em farmácia
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.