• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determine X e Y na igualdade...

Determine X e Y na igualdade...

Mensagempor rafaelrosa » Ter Abr 26, 2011 12:57

Estou quebrando a cabeça nesta equação...

Determine X e Y na igualdade \begin{bmatrix} 3 & -1 \\ 1 & 2 \end{bmatrix}² x \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 13 \\ 2 \end{bmatrix}


Tentei assim, mas tranquei...

\begin{bmatrix} 3 & -1 \\ 1 & 2 \end{bmatrix}² = \begin{bmatrix} 6 & 1 \\ 1 & 4 \end{bmatrix} x \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 13 \\ 2 \end{bmatrix}
rafaelrosa
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Abr 25, 2011 10:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civíl
Andamento: cursando

Re: Determine X e Y na igualdade...

Mensagempor DanielRJ » Ter Abr 26, 2011 13:31

3x-y=13
x+2y=2 (-3)


3x-y=13
-3x-6y=-6


-7y=7

y= -1 e x+2.-1=2
x=4
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Determine X e Y na igualdade...

Mensagempor rafaelrosa » Qua Abr 27, 2011 09:18

Muito obrigado, entendi como iniciar o calculo só não entendi o X no final...
rafaelrosa
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Abr 25, 2011 10:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civíl
Andamento: cursando

Re: Determine X e Y na igualdade...

Mensagempor LuizAquino » Qua Abr 27, 2011 10:15

A equação do exercício é \begin{bmatrix} 3 & -1 \\ 1 & 2 \end{bmatrix}^2 \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 13 \\ 2 \end{bmatrix}.

Sabemos que \begin{bmatrix} 3 & -1 \\ 1 & 2 \end{bmatrix}^2 = \begin{bmatrix} 3 & -1 \\ 1 & 2 \end{bmatrix}\begin{bmatrix} 3 & -1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 8 & -5 \\ 5 & 3 \end{bmatrix}.

Portanto, temos que resolver \begin{bmatrix} 8 & -5 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 13 \\ 2 \end{bmatrix}. Ou ainda, temos que resolver \begin{bmatrix} 8x-5y \\ 5x+3y \end{bmatrix} = \begin{bmatrix} 13 \\ 2 \end{bmatrix}.

Agora, basta você resolver o sistema:
\begin{cases}
8x-5y = 13\\
5x+3y = 2
\end{cases}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Determine X e Y na igualdade...

Mensagempor DanielRJ » Qua Abr 27, 2011 12:08

Ops não vi que era ao quadrado. Desculpe pela informação errada ae.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.