• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equações com Matrizes

Equações com Matrizes

Mensagempor Lucas Gabriel » Qua Fev 23, 2011 09:44

Sendo A = [-5 0 /-1 4] e B = [1-3/2 1] , resolva a equação 3X – A = 2B ( Obs: em A -5 é coluna com -1 e 0 com 4. Em b 1 coluna com 2 e -3 com 1). Não sei como resolver este tipo de equação. Quem souber e puder me ajudar muito obrigado.
Lucas Gabriel
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Fev 23, 2011 09:34
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Mecânica Industrial
Andamento: cursando

Re: Equações com Matrizes

Mensagempor Elcioschin » Qua Fev 23, 2011 11:20

Não deu para entender

Se você não sabe usar o LaTeX, escreva assim:

A =

a ...... b

c ...... d
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Equações com Matrizes

Mensagempor LuizAquino » Qua Fev 23, 2011 11:28

Lucas Gabriel escreveu:Sendo A = \begin{bmatrix}-5 & -1 \\ 0 & 4\end{bmatrix} e B = \begin{bmatrix}1 & 2 \\ -3 & 1\end{bmatrix}, resolva a equação 3X – A = 2B.


Você vai operar com a equação matricial 3X – A = 2B como se estivesse operando com uma equação convencional. Você só deve tomar cuidado com o produto entre matrizes (que de modo geral não é comutativo).

3X - A = 2B
3X = 2B + A
X = \frac{1}{3}(2B + A)

X = \frac{1}{3}\left(2\begin{bmatrix}1 & 2 \\ -3 & 1\end{bmatrix} + \begin{bmatrix}-5 & -1 \\ 0 & 4\end{bmatrix}\right)

X = \begin{bmatrix}-1 & 1 \\ -2 & 2\end{bmatrix}

Observação
Vale lembrar que se a equação fosse algo como AX=B, então você iria precisar calcular a inversa de A, isto é, X = A^{-1}B.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Dúvida questao de vestibular.

Mensagempor EduardoFavarin » Qua Mar 02, 2011 22:14

A questão é a seguinte:

Imagem

Sei que a resolução dela é por matrizes/regra de cramer... mas só que eu nao estou conseguindo aplicar. Me ajudem! grato...
EduardoFavarin
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mar 02, 2011 21:53
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Equações com Matrizes

Mensagempor Elcioschin » Qua Mar 02, 2011 22:55

Eduardo

Por favor não utilize o tópico existente de alguma questão para postar uma nova questão.
Abra um novo tópico para colocar sua questão.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?