• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(AFA) DETERMINANTE

(AFA) DETERMINANTE

Mensagempor natanskt » Seg Nov 22, 2010 14:54

o determinante \begin{bmatrix}
x & 0 & 1 \\
0 & 1 & x \\
1 & 0 & x
\end{bmatrix} é:
a-) positivo para x e R
b-)negativo para {x e r /0<x<1}
c-)positivo para {x e r /x <-1 ou x>1}
d-)negativo para {x e r / x<-1}


galera eu acho que fiz certo.
fiz por sarrus.
deu x^2-1
mais e agora oque eu faço?
não sei o que fazer,essa questão parece facil.
vlw
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (AFA) DETERMINANTE

Mensagempor Molina » Seg Nov 22, 2010 18:49

Boa tarde, Natan.

Faça o gráfico de f(x)=x^2 -1

A função x^2 é bem usada e sabemos que é uma parábola. Subtraindo 1, a função descerá 1 unidade.

Agora veja onde essa função é positiva e onde ela é negativa (basta olhar o que esta acima do eixo x e abaixo do mesmo eixo)

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.