Bom dia!
Tentei fazer o problema abaixo de acordo com a fórmula An=A1.q^n-1, mas não consigo solucioná-lo. Coloquei a ordem para representar a idade dos irmãos: P.G. (x,y,z), depois tentei criar uma espécie de sistema do tipo: x.y.z=64, acrescentando que x+y=20, mas não consigo visualizar mais nada. Por favor, me ajudem. Segue o problema abaixo:
As idades de três irmãos são números inteiros que estão em P.G. Se o produto dessas idades é 64 e a soma das idades dos mais velhos é 20, quantos anos tem cada um dos irmãos?
Obrigada!


(Razão da P.G)
(Produto das raízes)
(Soma das idades dos filhos mais velhos)




![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)